Supercomputing for the Exascale Era

Supercomputing for the Exascale Era

Cray, an HPE company, held a panel discussion webinar on October 18 to discuss Exascale (10^18, get it?) supercomputing. This is definitely not in my area of expertise, but it is certainly interesting.

Following is information I gleaned from links they sent to me. Basically, it is Why Supercomputing. And not only computers, but also networking to support them.

Today’s science, technology, and big data questions are bigger, more complex, and more urgent than ever. Answering them demands an entirely new approach to computing. Meet the next era of supercomputing. Code-named Shasta, this system is our most significant technology advancement in decades. With it, we’re introducing revolutionary capabilities for revolutionary questions. Shasta is the next era of supercomputing for your next era of science, discovery, and achievement.

WHY SUPERCOMPUTING IS CHANGING

The kinds of questions being asked today have created a sea-change in supercomputing. Increasingly, high-performance computing systems need to be able to handle massive converged modeling, simulation, AI, and analytics workloads.

With these needs driving science and technology, the next generation of supercomputing will be characterized by exascale performance, data-centric workloads and diversification of processor architectures.

SUPERCOMPUTING REDESIGNED

Shasta is that entirely new design. We’ve created it from the ground up to address today’s diversifying needs.

Built to be data-centric, it runs diverse workloads all at the same time. Hardware and software innovations tackle system bottlenecks, manageability, and job completion issues that emerge or grow when core counts increase, compute node architectures proliferate, and workflows expand to incorporate AI at scale.

It eliminates the distinction between clusters and supercomputers with a single new system architecture, enabling a choice of computational infrastructure without tradeoffs. And it allows for mixing and matching multiple processor and accelerator architectures with support for our
new Cray-designed and developed interconnect we call Slingshot.

EXASCALE-ERA NETWORKING

Slingshot is our new high-speed, purpose-built supercomputing interconnect. It’s our eighth generation of scalable HPC network. In earlier Cray designs, we pioneered the use of adaptive routing, pioneered the design of high-radix switch architectures, and invented a new low-diameter system topology, the dragonfly.

Slingshot breaks new ground again. It features Ethernet capability, advanced adaptive routing, first-of-a-kind congestion control, and sophisticated quality-of-service capabilities. Support for both IP-routed and remote memory operations broadens the range of applications beyond traditional modeling and simulation.

Quality-of-service and novel congestion management features limit the impact to critical workloads from other applications, system services, I/O traffic, or co-tenant workloads. Reduction in the network diameter from five hops (in the current Cray XCTM generation) to three reduces cost, latency, and power while improving sustained bandwidth and reliability.

FLEXIBILITY AND TCO

As your workloads rapidly evolve, the ability to choose your architecture becomes critical. With Shasta, you can incorporate any silicon processing choice — or a heterogenous mix — with a single management and application development infrastructure. Flex from single to multi-socket nodes, GPUs, FPGAs, and other processing options that may emerge, such as AI-specialized accelerators.

Designed for a decade or more of work, Shasta also eliminates the need for frequent, expensive upgrades, giving you exceptionally low total
cost of ownership. With its software architecture you can deploy a workflow and management environment in a single system, regardless of packaging.

Shasta packaging comes in two options: a 19” air- or liquid-cooled, standard datacenter rack and a high-density, liquid-cooled rack designed to take 64 compute blades with multiple processors per blade.

Additionally, Shasta supports processors well over 500 watts, eliminating the need to do forklift upgrades of system infrastructure to accommodate higher-power processors.

Inductive Automation Announces Ignition Firebrand Awards

Inductive Automation Announces Ignition Firebrand Awards

Inductive Automation has selected the recipients of its Ignition Firebrand Awards for 2019. The announcements were made at the Ignition Community Conference (ICC), which took place September 17-19. I get to see the poster displays and chat with the companies at ICC. I love the technology developers, but it’s fascinating to talk with people who actually use the products.

[Disclaimer: Inductive Automation is a long-time and much appreciated sponsor of The Manufacturing Connection. If you are a supplier, you, too, could be a sponsor. Contact me for more details. You would benefit from great visibility.]

The Ignition Firebrand Awards recognize system integrators and industrial organizations that use the Ignition software platform to create innovative new projects. Ignition by Inductive Automation is an industrial application platform with tools for the rapid development of solutions in human-machine interface (HMI), supervisory control and data acquisition (SCADA), manufacturing execution systems (MES), and the Industrial Internet of Things (IIoT). Ignition is used in virtually every industry, in more than 100 countries.

“The award-winning projects this year were really impressive,” said Don Pearson, chief strategy officer for Inductive Automation. “Many of them featured Ignition 8 and the new Ignition Perspective Module, both of which were released just six months ago. We were really impressed with how quickly people were able to create great projects with the new capabilities.”

These Ignition Firebrand Award winners demonstrated the power and flexibility of Ignition:

  • Brock Solutions worked with the Dublin Airport in Ireland to replace the baggage handling system in Terminal 2. The new system has 100,000 tags and is the largest Ignition-controlled airport baggage handling system in the world.
  • Corso Systems & SCS Engineers partnered on a pilot project for the landfill gas system of San Bernardino County, California. The pilot was so successful, it will be expanded to 27 other county sites. It provides a scalable platform with strong mobile capabilities from Ignition 8 and Ignition Perspective, plus 3D imaging from drone video and virtual reality applications.
  • ESM Australia developed a scalable asset management system to monitor performance and meet service requirements for a client with systems deployed all over Australia. The solution leveraged Ignition 8, Ignition Perspective, MQTT, and legacy FTP-enabled gateways in the field.
  • H2O Innovation & Automation Station partnered to create a SCADA system for the first membrane bioreactor wastewater treatment plant in Arkansas. The new system for the City of Decatur shares real-time data with neighboring water agencies as well as the mayor.
  • Industrial Networking Solutions created a new oil & gas SCADA system in just six months for 37 sites at ARB Midstream. The solution included hardware upgrades, a new control room, and a diverse collection of technologies with cloud-hosted SCADA, MQTT, Ignition Edge, and SD-WAN.
  • MTech Engineering developed an advanced real-time monitoring and control system for the largest data center campus in Italy. The project for Aruba S.p.A. had to work with huge amounts of data — and was done at a much lower cost than was possible with any other SCADA solution.
  • NLS Engineering created a single, powerful operations and management platform for more than 30 solar-power sites for Ecoplexus, a leader in renewable energy systems. The solution provided deep data acquisition, included more than 100,000 tags, and led to the creation of a platform that can be offered to other clients.
  • Streamline Innovations used Ignition, Ignition Edge, Ignition Perspective, and MQTT, to facilitate the automation of natural gas treating units that convert extremely toxic hydrogen sulfide into fertilizer-grade sulfur. The solution increased uptime, reduced costs, and provided access to much more data than Streamline had seen previously.
SPS Drives Trade Fair in Nuremberg Automation News

SPS Drives Trade Fair in Nuremberg Automation News

I will only be at SPS for a few hours this year to check in with old friends and see some of the latest automation goodies. But I’m glad to be there at all. Thank you to Siemens who is sponsoring a press tour that includes a couple of days of intense cybersecurity briefings and workshops.

Oh, and a trip to Allianz Stadium to see the technology and a Bayern Munchen football match.

Some early SPS news:

  • Avnu Alliance Demonstrates New Conformance Test Reference Tool
  • OPC Foundation promises much news plus addition of Rockwell Automation

OPC Foundation

OPC Foundation has sent a couple of emails inviting us to a press briefing at SPS promising much news. I won’t be in Nuremberg on Tuesday, but I’ll catch up with Stefan and Tom for sure on Wednesday.

The mating dance has ended after a few months. Rockwell Automation has rejoined the OPC Foundation and gained a board seat. OPC Foundation has elected Juergen Weinhofer, vice president of common architecture and technology for Rockwell Automation, to its board of directors. Note that Weinhofer is also the Rockwell delegate to the ODVA board.

Weinhofer’s election to the board extends Rockwell Automation’s engagement in the technical work of the OPC Foundation and its technical advisory council.

“OPC UA has become the dominant open protocol for machine-to-software and machine-to-cloud solutions, and it is becoming critical for companies deploying a Connected Enterprise,” Weinhofer said. “I look forward to helping the OPC Foundation become a leader in machine-to-machine applications and helping OPC UA users unlock more value from their production systems.”

This quote is from the OPC news release. We should note that “Connected Enterprise” (capitalized) is the Rockwell Automation theme. I also note while parsing the comment that Rockwell is still firmly fixed in the factory floor area where Weinhofer specifically states “become a leader in machine-to-machine applications.”

“Rockwell Automation is a proven leader in industry standardization and open information technologies,” said Stefan Hoppe, president of the OPC Foundation. “I welcome not just Juergen’s business and political skills on the board but also the increased technical and commercial contribution that the wider Rockwell Automation team will also bring to the foundation.”

Avnu Alliance

Avnu Alliance, an industry consortium enabling open, standards-based deterministic networking, will exhibit at SPS IPC Drives in the University Stuttgart ISW booth. Avnu Alliance, alongside ISW and Industrial Internet Consortium (IIC), will showcase the role of conformance test plans, testbeds and test reference tools in ensuring an interoperable ecosystem of Time Sensitive Networking (TSN) devices.

“We are in cooperation with IIC, IEEE, IEC and others in creating an interoperable ecosystem through a common network foundation that stems from industry open standards and testing,” said Todd Walter, Avnu Alliance Industrial Segment Chair. “The market will continue to require multiple application layer protocols for networked industrial systems. The Avnu Alliance charter is to enable interoperability at the network layer, to ensure ‘One TSN.’ We are the organization focused on providing TSN test plans and reference test architectures to anyone in the industry that wants to test for TSN compatibility.”

As such, Avnu serves to support Fieldbus organizations by providing its TSN conformance tests and procedures to ensure those organizations’ interoperability in the wider Ethernet system.

Leveraging the industry-defined requirements for TSN network interoperability, Avnu ensures there is a universal set of test plans for conformance to guarantee interoperability at the network layer. Avnu has developed a baseline test plan in the industrial market that ensures industrial devices, whether end device, infrastructure component or silicon, conform to the relevant IEEE standards, as well as the industrial automation profile being defined by IEC/IEEE 60802 Joint Project working group.

Starting with Time Synchronization, or 802.1AS as the foundation for all TSN devices, Avnu released the first set of test plans at SPS IPC Drives in 2017. Avnu will soon publish additional conformance test plans for end devices, such as enhancements for scheduled traffic.

At SPS IPC Drives 2018, Avnu Alliance will show a new proof-of-concept (POC) Conformance Test Reference Design that offers a single, streamlined way for vendors to test TSN interoperability. The POC Conformance Test Reference Design is designed to automatically test TSN devices for compliance to 802.1AS. The demonstration features a Linux open-source test tool created by ISW in partnership with Avnu. This tool would also allow other protocol organizations to test application stacks on top of a TSN network in a streamlined way enabling one-stop certification at any test house.

SPS Drives Trade Fair in Nuremberg Automation News

ODVA Industry Conference and Annual Meeting

The ODVA held its Industry Conference and 19th Annual meeting this week in Atlanta. Perhaps more than the Common Industrial Protocol (CIP), the topic of conversation was Michael—the hurricane. We started getting rain from its outer bands in the late afternoon Wednesday. By the time I awoke at 5:30 am to get ready to catch my flight out, it was all over. Not so fortunate were the millions directly impacted. My prayers go out to them.

I have missed the last two or three of these. It was good to get an update. There was no announcement while I was there, but there were some people from Honeywell Process Solutions present who talked about using EtherNet/IP for process automation applications. These switching industry alignments are fascinating to watch. Foundation Fieldbus seems to have lost momentum recently. Will EtherNet/IP, the CIP network, absorb some of the market share?

A well organized series of speakers started Wednesday morning tech sessions with a quick update from all of the SIGs. There are many volunteers putting out an incredible amount of hours developing and updating the various specifications. I can‘t report on them all here—it would be too deep into the weeds anyway. But let‘s just say that ODVA is alive and well.

As even casual readers here know, I am a fan of Time Sensitive Networking (TSN). Yes, I know that it‘s not ready for prime time, yet. Products are beginning to appear in the market, and interest is building across the industry.

I sat in two sessions focused on TSN and CIP. There is technical work going on. The sessions and ensuing questions laid bare the engineering challenges involved in developing CIP over TSN. It‘s non-trivial, but doable. Some may still question TSN, but I‘m even more bullish.

On another front, work has begun on updating the ODVA product data sheet specifications. This work will eventually provide for more and better information to users.

Industrial Networking Enabling IIoT Communication White Paper

Industrial Networking Enabling IIoT Communication White Paper

Industrial Networking Enabling IIoT Communication white paper

Working consortia of companies and individuals researching a technology provide great guidance for users of the technology—usually in the form of white papers. The Industrial Internet Consortium (IIC) has been especially prolific lately. This means many companies and individuals see the importance of donating time and expertise to the cause.

The IIC has announced the IIC Industrial Networking Enabling IIoT Communication white paper. The paper serves as an introductory guide on industrial networking for IIoT system designers and network engineers, and offers practical solutions based on key usage scenarios.

“Industrial networking is the foundation of IIoT,” said David Zhe Lou, Chief Researcher, Huawei Technologies. “There are many choices of networking technologies depending on the application, the industrial network, deployment situation and conditions, but there is no universal or preferred industrial networking solution.”

Industrial networking infrastructure and technologies reside at the IP layer and below, and enable industrial assets, such as machines, sites and environments, to connect to the business professionals supporting applications across a wide range of industry sectors. Industrial networking technologies provide the foundation for applications that enable manufacturing productivity and profitability.

“IIoT applications have different needs depending on the industrial application and therefore demand robust, flexible and secure networks,” said Cliff Whitehead, Business Development Manager, Rockwell Automation. “This white paper will help IIoT system designers and network engineers understand the tradeoffs they can consider when designing an industrial network architecture that will be a strong foundation for current and future IIoT scenarios.”

Industrial networking is different from networking for the enterprise or networking for consumers. For example, IIoT system designers and network engineers need to make decisions about using wired or wireless communications. They have to figure out how to support mobility applications such as vehicles, equipment, robots and workers. They must also consider the lifecycle of deployments, physical conditions, such as those found in mining and agriculture, and technical requirements, which can vary from relaxed to highly demanding.

“Networking technologies range from industry-specific to universal, such as the emerging 5G, which meets diverse industrial needs,” continued Jan Höller, Research Fellow at Ericsson. “Industrial developers need guidance when devising solutions to select the right networking technologies, and this white paper is the first step to providing the missing methods and tools.”

The Industrial Networking Enabling IIoT Communication white paper sets the stage for the Industrial Internet Network Framework (IINF), which will complement the Industrial Internet Connectivity Framework (IICF) by detailing requirements and best available technologies for the lower three layers of the industrial internet communication stack.

The full IIC Industrial Networking Enabling IIoT Communication white paper and a list of IIC members who contributed can be found on the IIC website:

The Industrial Internet Consortium is a program of the Object Management Group (OMG).

Follow this blog

Get a weekly email of all new posts.