Improve IIoT Deployment

Improve IIoT Deployment

The Industrial Internet of Things by definition is all about connections. Connecting hundreds of devices which often have differing protocols is a huge challenge. In an attempt to facilitate IIoT deployments, ioTium has announced an alliance with Telit. The agreement allows Telit deviceWISE gateway technology on the ioTium Edge App Store for single-click deployment.

After wading through a couple of paragraphs of marketing generalities, I found the best explanation with this quote. “With the cooperation of Telit, customers can now rapidly connect different communications protocols like BACnet, OPC, Modbus or even proprietary protocols to various IoT cloud offerings such as Azure IoT, Siemens MindSphere or private cloud end points,” said Sri Rajagopal, CTO, ioTium. “All commissioning, data mapping, and contextualization can now be done remotely, dramatically reducing the time and cost of flying technicians and data scientists to the site to remediate in person.”

Then the obligatory quote from the partner. I’ve talked with Fred Yentz for many years about connecting data. Here’s his thought on this announcement. “Our alliance with ioTium establishes a best-in-class approach for digital connectivity in the industrial world,” said Fred Yentz, president Strategic Partnerships, Telit. “Together, we are providing industrial enterprise customers a secure, plug-and-play way to connect any machine to cloud-based applications to capitalize on the benefits of Industry 4.0.”

Solving this problem is mainly what the various platforms are attempting. I would be interested in hearing what is actually working out in the field. Comment or send me an email. Something is working, because engineers are doing this.

Smart Factory Transition

Smart Factory Transition

The short take: ADVICS and Macnica Networks, Inc. deploy FogHorn Edge Computing Software in Smart Factory Transition. We talk endlessly about IoT, digital transformation, and now Smart Factory Transition. Do these terms mean anything? I think we are seeing people do actual work by using digital technologies that they mostly already have pieces of. Then marketers come along and christen it with a name. We are witnessing real progress improving manufacturing and production with modern thinking and tech.

In this case according to the press release, a $5B automotive brake system manufacturer deploys FogHorn Lightning Edge Computing Software Platform for real-time data processing, machine learning and AI. Note: machine learning is usually considered a subset of AI.

ADVICS Co. Ltd., working with Macnica Networks Inc., has deployed FogHorn Lightning Edge Computing Software to provide onsite data processing, real-time analytics, and ultimately machine learning AI in its smart factory transition.

ADVICS supplies advanced, high-quality automotive brake systems and components globally. ADVICS partnered with Macnica Networks to digitize its manufacturing sites and integrate varied equipment data to enable edge-based real-time visualization and analytics of its manufacturing. The digital transformation has allowed ADVICS to identify production issues immediately and quickly determine the root cause therefore improving manufacturing efficiencies. Manual workloads surrounding data acquisition have also been significantly reduced, enabling operation leaders to spend more time on managing production.

“ADVICS digital transformation to a smart factory reflects their mission to contribute to the reliability of society by pursuing a better safety, environment and comfort through products that delight customers,” said Yuta Endo, vice president, general manager of business development and head of APAC operations at FogHorn. “We are excited to work with our partner, Macnica Networks, to help ADVICS enhance manufacturing efficiency. FogHorn Lightning is uniquely positioned to help companies transform streaming data into actionable, predictive insights right at the edge, providing real-time monitoring and diagnostics, streaming analytics, machine learning and operations optimization.”

FogHorn’s Lightning product portfolio embeds edge computing software locally, as close to the source of streaming sensor data as possible. FogHorn Lightning Edge platform delivers low latency for onsite data processing and real-time analytics in addition to its machine learning and artificial intelligence (AI) capabilities.

ADVICS is one of the 13 major Aisin Group companies. The main business is the development, production and sales of automotive brake systems and parts that make up these systems.

Macnica Networks is a member of the Macnica Group, a growing global technology distributor. The company has over 20 years of experience in product localization, sales, and technical support of computer network equipment. It supplies a full line of leading-edge network appliances, software, telecom solutions to its customers, and consistently brings innovative new products to their portfolio.

FogHorn is a developer of edge computing software for industrial and commercial IoT application solutions.

Advice for Managing and Assessing Trustworthiness for IIoT

Advice for Managing and Assessing Trustworthiness for IIoT

The spread of connected devices with the resultant flow of data throughout the industrial enterprise spurs concern for security and trustworthiness of that data. The Industrial Internet Consortium (IIC) and its members recognize this problem / challenge.

I normally have a conversation with the authors of the IIC papers to get a context and sense of all the work involved in their development. In this particular case, I ran out of time. Many of you know that I am up to my eyes in soccer activities at this time of year. I just finished leading a class of new referees while I am at one of my peak times for assigning referees to games. Sometimes, I just don’t have enough hours. I bet you have never felt that…

So, IIC has published the Managing and Assessing Trustworthiness for IIoT in Practice white paper. The paper serves as an introductory guide to trustworthiness in IIoT, which is driven by the convergence of IT with OT, and includes a definition of trustworthiness, examples and a best-practice approach to managing trustworthiness in IIoT systems.

Confidence is essential to business, including confidence that the consequences of decisions and processes are acceptable and that business information is handled properly. The advent of IIoT means that confidence is also now required in technologies, physical components, and systems in addition to confidence in individuals, organizations and processes.

“The fact is that it is possible to have ‘too much’ trustworthiness,” said Jim Morrish, co-Chair of the IIC Business Strategy and Solution Lifecycle Working Group. “Trustworthiness costs, in terms of the costs of devices and associated software, and also often in terms of user experience and functionality. A trustworthiness solution for a nuclear processing plant would be an unnecessary hindrance to the day-to-day operations of a peanut butter manufacturer.”

The white paper’s best-practice approach to managing trustworthiness is comprised of four phases: baselining the system, analyzing potential trustworthiness events, implementing trustworthiness targets and governance, and iterating and maintaining the resulting trustworthiness model.

“This whitepaper demonstrates that trustworthiness is more than just another academic phrase to describe expectations of stakeholders, operators and users of an IIoT system,” said Marcellus Buchheit, President and CEO of Wibu-Systems USA, cofounder of Wibu-Systems AG in Germany and co-chair of the IIC Trustworthiness Task Group. “This paper presents several models that show how trustworthiness can be practically used in business decisions to increase trust in an IIoT system under the impact of business reality and constraints.”

The white paper also highlights that trustworthiness is not a static concept. “An IIoT system must address trustworthiness requirements throughout the lifecycle of the system. This means that industrial IoT trustworthiness is not a project with a finite start and a finite end. It is a journey that must be powered by an established program,” said Bassam Zarkout, founder of IGnPower and co-author of the paper.

“Security is already recognized as one of the most important considerations when designing an IIoT system,” said Frederick Hirsch who is a Standards Manager at Fujitsu, and also co-chair of the IIC Trustworthiness Task Group. “This white paper expands on that thinking by recognizing that safety, privacy, reliability and resilience need to be considered in conjunction with security to establish trust that IIoT systems will not only be functional but also will not harm people, the environment or society.”

The white paper discusses a live example of an IIoT system analysed from a trustworthiness perspective. Fujitsu’s Factory Operation Visibility & Intelligence (FOVI) system (and IIC testbed) has the primary goal of bringing more visibility of operations to plant managers in near-real time. The goal is to reduce human errors, bring more predictability to product assembly and delivery, and optimize production all while ensuring a sufficient level of trustworthiness.

“FOVI highlights how the different aspects of trustworthiness can impact business performance,” said Jacques Durand, Director of Engineering and Standards at Fujitsu, co-Chair of the IIC Business Strategy and Solution Lifecycle Working Group and also a member of the IIC Steering Committee. “For instance slowing down a production line can reduce costs associated with stress on machinery and machine operators, but such a course of action may also adversely impact productivity or lead time. In the white paper we highlight the need to understand trade-offs and to use metrics in a data-driven and intelligent manner.”

The Managing and Assessing Trustworthiness for IIoT in Practice white paper sets the stage for further work that the IIC will undertake focusing on trustworthiness.

The full IIC Managing and Assessing Trustworthiness for IIoT in Practice white paper and a list of IIC members who contributed can be found on the IIC website.

Tales from the Tech Unknown

Technology and Podcast Links

I’ve released a couple of podcasts recently. One was based on what I learned at the HPE Discover Conference and the other based on a conversation with Dell Technologies IoT and OEM CTO Jason Shepherd. These can also be seen on my YouTube channel.

I have discovered more interest in the IT side of things on my podcasts. One I recorded a few months ago has hit more than 3.2K downloads. Interesting where the industry is going.

As I became recognized as the independent writer/analyst in the Industrial Internet of Things market, this infographic came my way. I don’t really have the right site to publish it, but here is a link–80 Internet of Things Statistics. Interesting.

The podcasts:

192 Why and OT guy goes to IT conferences — mostly based on trip to HPE Discover conference.

193 Open Source, IT and OT and Dell Tech — mostly on interview with Dell Tech’s CTO for IoT Jason Shepherd.

Cybersecurity Zero Day Threats and Executive Survey

Cybersecurity Zero Day Threats and Executive Survey

Cybersecurity is in the news more often than violence or politics, its seems. Last week I received two important pieces of news—both reported below. The first details vulnerabilities found in VxWorks—the most widely used Real-Time Operating System forming the foundation for process control. The other news concerns a survey of executives that shows continued cyber attacks on industrial systems.

Zero Day Vulnerabilities

Enterprise IoT security company, Armis, announced the discovery of 11 zero-day vulnerabilities, 6 critical, that affect Wind River® VxWorks versions since version 6.5, that include the IPnet stack, collectively known as “URGENT/11.” Updated releases have been provided. URGENT/11 does not impact versions of the product designed for certification, such as VxWorks 653 and VxWorks Cert Edition.

VxWorks, the leading real-time operating system (RTOS), is used in more than two billion devices across industrial, medical and enterprise environments such as mission-critical systems including SCADA, elevator and industrial controllers, patient monitors and MRI machines, as well as firewalls, routers, satellite modems, VOIP phones and printers. If exploited, URGENT/11 could allow a complete takeover of the device and cause disruption on a scale similar to what resulted from the EternalBlue vulnerability.

“VxWorks is the most widely used operating system you may never have heard of,” said Ben Seri, vice president of research at Armis. “A wide variety of industries rely on VxWorks to run their critical devices in their daily operations—from healthcare to manufacturing and even security businesses. This is why URGENT/11 is so important. The potential for compromise of critical devices and equipment especially in manufacturing and healthcare is a big concern.”

URGENT/11 includes six Remote Code Execution (RCE) vulnerabilities that could give an attacker full control over a targeted device, via unauthenticated network packets. Any connected device leveraging VxWorks that includes the IPnet stack is affected by at least one of the discovered vulnerabilities. They include some devices that are located at the perimeter of organizational networks that are internet-facing such as modems, routers and firewalls. Any vulnerability in such a device may enable an attacker to breach networks directly from the internet. Devices protected by perimeter security measures also can be vulnerable once the devices create TCP connections to the internet. These connections can be hijacked and used to trigger the discovered TCP vulnerabilities, allowing attackers to take over the device and access the internal network.

“URGENT/11 could allow attackers to remotely exploit and take over mission critical devices, bypassing traditional perimeter and device security. Every business with these devices needs to ensure they are protected,” said Yevgeny Dibrov, CEO and co-founder of Armis. “The vulnerabilities in these unmanaged and IoT devices can be leveraged to manipulate data, disrupt physical world equipment, and put people’s lives at risk.”

VxWorks is pervasive and trusted due to its rigorous and high-achieving safety certifications and its high degree of reliability and real-time accuracy. In its 32-year history, only 13 Common Vulnerabilities and Exposures (CVEs) have been listed by MITRE as affecting VxWorks. Armis discovered unusually low-level vulnerabilities within the IPnet stack affecting these specific VxWorks versions released in the last 13 years, from versions 6.5 and above. These are the most severe vulnerabilities found in VxWorks to date.

The IPnet networking stack was acquired by Wind River through its acquisition of Interpeak in 2006. Prior to the acquisition, the stack was broadly licensed to and deployed by a number of real-time operating system vendors.

Wind River has been working in collaboration with Armis on this matter, and customers were notified and issued patches to address the vulnerabilities last month. To the best of both companies knowledge, there is no indication the URGENT/11 vulnerabilities have been exploited.

Organizations deploying devices with VxWorks should patch impacted devices immediately. More information can be found in the Wind River Security Alert posted on the company’s Security Center.

Operational Downtime is the Most Common Impact of IoT-Focused Cyberattacks

As connectivity in the Industrial Internet of Things (IIoT) promises to transform the manufacturing and production industry, new research by Irdeto underlines the importance of cybersecurity, revealing that 79% of manufacturing and production organizations surveyed have experienced an IoT-focused cyberattack in the past year. This finding demonstrates the importance of cybersecurity as IoT devices proliferate across the critical infrastructure of these organizations, to ensure that the potential business benefits of IoT can be realized safely.

The Irdeto Global Connected Industries Cybersecurity Survey of 220 security decision makers in organizations in this sector (700 respondents in total) found that of the organizations that were hit by an attack, operational downtime (47%), compromised customer data (35%) and compromised end-user safety (33%) were the most common impacts. These findings clearly point to a direct bearing on revenue as well as health safety challenges presented by unsecured IoT devices.

The research also suggests that these organizations are aware of where the key cybersecurity vulnerabilities exist with their infrastructure, but do not necessarily have everything they need to address them. The most prominent vulnerabilities within manufacturing and production organizations were in mobile devices and apps (46%). This was followed by the IT network (41%) and the software used by the organization (40%) – which if referring to the OT equipment software which runs of the factory floor, could be hugely problematic.

However, despite this awareness, 92% of respondents feel their organization does not have everything it needs to address cybersecurity challenges. 44% state that their organization needs to implement a more robust security strategy. This is followed by a need for additional expertise/skills within the organization to address all aspects of cybersecurity (42%) and a need for more effective cybersecurity tools (37%).

This is compounded by the finding that, in the manufacturing sector, a total of 91% of manufacturers and 96% of users of IoT devices state that the cybersecurity of the IoT devices that they manufacture or use could be improved either to a great extent or to some extent. Failure to address these challenges could prove costly with the average financial impact as a result of an IoT-focused cyberattack in the manufacturing space identified as more than $280,000 USD, according to the survey.

“While the benefits of IoT may be in abundance in manufacturing and industrial environments, this connectivity also increases the attack surface and these findings demonstrate that there is an awareness of the cybersecurity challenges and impacts within the industry, but potentially a need to rethink strategies to mitigate the impact of potential cyberattacks,” said Mark Hearn, Director of IoT Security and Business Development, Irdeto. “Whatever the nature of the threat, industrial and manufacturing organizations must understand the scope of their current risk, ask hard cybersecurity-centric questions to vendors, and work with trusted advisors to safely embrace connectivity in their manufacturing process.”

As organizations fight to keep pace with the cybersecurity challenges in the manufacturing sector, they do have several security measures in place, but have often not implemented enough layers into their security strategy. 21% of organizations surveyed do not currently have software protection technologies implemented, while 39% do not have mobile app protection implemented, despite identifying mobile devices and apps as the greatest source of vulnerabilities. In addition, only 50% make security part of the product design lifecycle process.

However, the majority of organizations that don’t already have these measures in place, state that they plan to implement them in the next year. In addition, 99% of the manufacturing organizations surveyed agree that a security solution should be an enabler of new business models, not just a cost. These findings suggest that attitudes towards IoT security are changing for the better.

“As the manufacturing industry embraces IoT technology it’s clear that there are many cybersecurity challenges that must be addressed, but the industry attitude towards cybersecurity is on the right track,” added Steeve Huin, Vice President of Strategic Partnerships, Business Development and Marketing, Irdeto. “As the scope of connected manufacturing grows, the opportunities and the risks are magnified and it is imperative that organizations upskill and implement robust cybersecurity strategies to ensure they mitigate the threat and safely take advantage of the benefits that IoT can bring.”

Follow this blog

Get a weekly email of all new posts.