Laser Micromachining Manufacturing Unveiled

As you add electronic sensing and control and networking to machinery, you can take a process to the next level. I’ve been impressed with the growing development of tighter tolerances and then better variety of materials for 3D printing (additive manufacturing). Here is an example of expanding the use of automated “subtractive” manufacturing—micro machining.

6-D Laser LLC was formed in 2018 as an affiliate of leading nanometer-level motion control specialist ALIO Industries, with the mission of integrating ultrafast laser processing with precision multi-axis motion systems. 6-D Laser offers Hybrid Hexapod-based laser micromachining systems for wide-range taper angle control, 5-Axis Laser Gimbal-based systems for laser processing 3D substrates, and unlimited field of view scanning solutions for laser processing large-format substrates.

Coming out of stealth mode and coinciding with its official launch in 2020, 6-D Laser has launched its website (www.6dlaser.com), and has also announced that the company will be showcasing its radical new approach to laser micro processing at the SPIE Photonics West event, booth 2149, 4-6 February in San Francisco, CA.

6D Laser’s central mission addresses limitations of existing laser processing systems which are largely due to sub-optimal positioning systems used by most system integrators. 6-D Laser tackles this problem by integrating ultra-fast laser material processing with the 6-D nanometer-level precision motion control solutions in which ALIO Industries specializes.

At the heart of 6-D Laser’s integrated ultrafast laser micromachining system is ALIO Industries’ Hybrid Hexapod, which takes a different approach to traditional 6 Degree of Freedom (6-DOF) positioning devices, and exhibits much higher performance at extremely competitive prices. Rather than 6 independent legs (and 12 connection joints) ALIO’s approach combines a precision XY monolithic stage, tripod, and continuous rotation theta-Z axis to provide superior overall performance.

The combination of serial and parallel kinematics at the heart of ALIO’s 6-D Nano Precision® is characterized by orders-of-magnitude improvements (when compared to traditional hexapods) in precision, path performance, speed, and stiffness. The Hybrid Hexapod® also has a larger work envelope than traditional hexapods with virtually unlimited XY travel and fully programmable tool center point locations. The Hybrid Hexapod® has less than 100 nm Point Precision® repeatability, in 3-dimensional space.

​6D Laser vertically integrates all of the sub-systems required for precision laser micro-processing, and it does this by forming strategic partnerships with key component and subsystem suppliers that are required to achieve the goals of demanding precision applications. In addition to its association with ALIO, 6-D Laser has also partnered with SCANLAB GmbH, which together with ACS Motion Control, has developed an unlimited field-of-view (UFOV) scanning solution for coordinate motion control of the galvo scanner and positioning stages called XLSCAN. 6-D Laser has also partnered with NextScanTechnology to provide high-throughput scanning systems that take advantage of the high rep-rates in currently available in ultrafast lasers, and Amplitude Laser, a key supplier of ultrafast laser systems for industrial applications.

Dr. Stephen R. Uhlhorn, CTO at 6-D Laser says, “Introducing an integrated ultrafast laser micromachining system that combines the positioning capabilities of the Hybrid Hexapod®, with high-speed optical scanning leads to a system that can process hard, transparent materials with wide-range taper angle control for the creation of high aspect ratio features in thick substrates, without limitations on the feature or field size.”

Ultrafast laser ablative processes, which remove material in a layer-by-layer process, result in machined features that have a significant side wall taper. For example, a desired cylindrical hole will have a conical profile. Taper formation is difficult to avoid in laser micromachining processes that are creating deep features (> 100 microns). Precision scanheads can create features with near-zero angle side walls, but they are limited to small angles of incidence (AOI) and small field sizes by the optics in the beamline.

Uhlhorn continues, “6-D Laser’s micromachining system controls the AOI and resulting wall taper angle through the Hybrid Hexapod® motion system, and the programmable tool center point allows for the control of the AOI over the entire galvo scan field, enabling the processing of large features.”

About 6-D Laser LLC
6D Laser, LLC, an affiliate of ALIO Industries, Inc, was founded in 2018 by C. William Hennessey and Dr. Stephen R. Uhlhorn. ALIO Industries is an industry-leading motion system supplier, specializing in nano-precision multi-axis solutions. 6D Laser was formed with the mission of integrating ultrafast laser processing with precision multi-axis motion systems, including ALIO’s Patented Hybrid Hexapod. The integration of ALIO True Nano motion systems with key sub-system suppliers, through strategic partnerships with Amplitude Laser, SCANLAB, and ACS Motion Control, enables a new level of precision and capability for advanced manufacturing.

www.6DLaser.com ​​​​​
www.microprm.com

First Private Stand-alone Industrial 5G Network

First Private Stand-alone Industrial 5G Network

Sander Rotmensen of Siemens automotive test center in Nuremberg, Germany and Yongbin Wei of Qualcomm recently discussed the birth of 5G networks for industrial applications. The occasion concerned the press release announcing implementation of a 5G private industrial network.

We’ve all heard about 5G and worries from a variety of national governments about whether another country is embedding spy firmware in its local company’s products. Personally, I think the worry is both silly and well-founded. Every country that houses a company in the market most likely has intelligence agents trying to do the same thing. (I could go into my university education and acquaintance with a professor with “former” CIA ties, but that goes too far afield.) And all companies will deny any tie.

And…we are going to use 5G because the benefits are great. A benefit everyone mentions is the ability to build private networks for a local facility. The network has very low latency and built-in 5-9s (99.999%) uptime.

And what are some of the use cases we can anticipate? Rotmensen and Wei provided a list of ideas:

  • Mobile equipment (tablets, etc.)
  • Assisted Workers (remote video/audio to experts, etc.)
  • Backhaul depending upon geography
  • Autonomous machines–robots, cobots with communication and low latency
  • Autonomous logistics
  • Edge computing, larger amounts of data with low latency

With the final release of IEEE Time Sensitive Networking still years away, 5G is looking very good. We are on release 15 presently. Release 16 is anticipated in June, 2020. With release 17, the increased capacity would easily handle pretty dense machine-to-machine and IoT applications.

First Private Standalone Industrial 5G Network

Showing the benefits of today’s trend toward cooperation and partnerships, this joint proof-of-concept network will explore the capabilities of 5G standalone networks for industrial applications.

The private 5G standalone (SA) network in a real industrial environment uses the 3.7-3.8GHz band. Both companies have joined forces in this project: Siemens is providing the actual industrial test conditions and end devices such as Simatic control systems and IO devices and Qualcomm is supplying the 5G test network and the relevant test equipment.

The 5G network was installed in Siemens’ Automotive Showroom and Test Center in Nuremberg. Automated guided vehicles are (AGV) displayed here which are primarily used in the automotive industry. New manufacturing options and methods are also developed, tested and presented before they are put into action on customer sites. This allows Siemens’ customers, such as automated guided vehicle manufacturers, to see the products interact live.

The Automotive Showroom and Test Center enables Siemens and Qualcomm to test all the different technologies in a standalone 5G network under actual operating conditions and to come up with solutions for the industrial applications of the future. Qualcomm Technologies installed the 5G test system comprising infrastructure and end devices in less than three weeks. Siemens provided the actual industrial setup including Simatic control systems and IO devices.

“Industrial 5G is the gateway to an all-encompassing, wireless network for production, maintenance, and logistics. High data rates, ultra-reliable transmission, and extremely low latencies will allow significant increases in efficiency and flexibility in industrial added value,” says Eckard Eberle, CEO Process Automation at Siemens. “We are therefore extremely pleased to have this collaboration with Qualcomm Technologies so that we can drive forward the development and technical implementation of private 5G networks in the industrial sector. Our decades of experience in industrial communication and our industry expertise combined with Qualcomm Technologies’ know-how are paving the way for wireless networks in the factory of the future.”

“This project will provide invaluable real-world learnings that both companies can apply to future deployments and marks an important key milestone as 5G moves into industrial automation,” said Enrico Salvatori, Senior Vice President & President, Qualcomm Europe/MEA. “Combining our 5G connectivity capabilities with Siemens’ deep industry know-how will help us deploy technologies, refine solutions, and work to make the smart industrial future a reality.”

The German Federal Network Agency has reserved a total bandwidth of 100 MHz from 3.7 GHz to 3.8 GHz for use on local industrial sites. German companies are thus able to rent part of this bandwidth on an annual basis and to make exclusive use of it on their own operating sites in a private 5G network whilst also providing optimum data protection. Siemens is using this principle to evaluate and test industrial protocols such as OPC UA and Profinet in its Automotive Showroom and Test Center together with wireless communication via 5G.

First Private Stand-alone Industrial 5G Network

Collaborative Robots Just Keep Getting More Interesting

This entire area of collaborative robots (cobots) just keeps getting more interesting. The idea of humans and robots working collaboratively is intuitive but has been difficult to achieve. Cobots have ramifications far beyond industrial applications. But even here, they can lead the way to better productivity and effectiveness.

In this latest piece of news, Universal Robots (UR) announced the immediate availability of the UR16e which boasts an impressive 16 kg (35 lbs) payload capability.

This cobot combines the high payload with a reach of 900 mm and pose repeatability of +/- 0.05 mm making it ideal for automating tasks such as heavy-duty material handling, heavy-part handling, palletizing, and machine tending.

“In today’s uncertain economic climate manufacturers need to look at flexible solutions to stay competitive,” said Jürgen von Hollen, President of Universal Robots. “With UR16e, we meet the need for a collaborative robot that can tackle heavy-duty tasks reliably and efficiently. This launch significantly expands the versatility of our product portfolio and gives manufacturers even more ways to improve performance, overcome labor challenges, and grow their business.”

Developed on UR’s e-Series platform, the UR16e offers these benefits:

·        Fast and frictionless deployment with easy programming and a small footprint

UR16e makes accelerating automation easy and fast. Programming and integration is simple – regardless of the user’s experience or knowledge base. Like all UR’s cobots, UR16e can be unpacked, mounted and programmed to perform a task within less than an hour. With a small footprint and 900 mm reach, UR16e easily integrates into any production environment without disruption. 

·        Addresses ergonomic challenges while lowering cost

With its 16 kg payload, UR16e eliminates the ergonomic and productivity challenges associated with lifting and moving heavy parts and products, lowering costs, and reducing downtime.  

·        Ideal for heavy-duty material handling and machine tending

Rugged and reliable, UR16e is ideal for automating high-payload and CNC machine tending applications, including multi-part handling, without compromising on precision.

“At Universal Robots we continue to push the boundaries of what’s possible with collaborative automation,” continued von Hollen. “Today, we’re making it easier than ever for every manufacturer to capitalize on the power of automation by bringing a cobot to market that is built to do more, as it delivers more payload than our other cobots.”

Like with UR’s other e-Series cobots; UR3e, UR5e and UR10e, the UR16e includes built-in force sensing, 17 configurable safety functions, including customizable stopping time and stopping distance, and an intuitive programming flow. UR16e meets the most demanding compliance regulations and safety standards for unobstructed human-robot collaboration, including EN ISO 13849-1, PLd, Category 3, and full EN ISO 10218-1.

First Private Stand-alone Industrial 5G Network

Collaborative Robotics Offer Flexible Packaging Automation

That engineers would develop ways for humans and robots to co-exist, yes even collaborate, seemed inevitable. Why should we consign robots to cages as safety hazards when the future assuredly requires close collaboration. Therefore the burgeoning area of collaborative robotics or cobots.

I’m thinking not just about industrial applications. Robots surely will assist an aging population cope with everyday tasks in our (near) future of fewer people to populate those jobs.

Several of the “old guard” robotics companies have developed “co-bots” but I’ve watched the development of Universal Robots for some time. The company sponsored this blog for a while a few years ago. Here I’ve picked up on a couple of items. The UR marketing team was a bit surprised to discover that I have more than a passing interest in packaging. As a matter of fact, I noticed packaging as a likely growth area for automation about 18 years ago, and that feeling has been borne out.

One story concerns a packaging demonstration with a socially worthwhile goal mixed in. The other reports on a recent market study by ABI Research.

Universal Robots Solves Random Picking Challenge, Providing Food for At-Risk Youth

The challenge: Pick six differently sized food items randomly oriented on a moving conveyor and place each of these items into the same pouch. Then do this again 1,199 more times, ensuring each pouch has the same six items. This is the challenge Universal Robots and Allied Technology will address, quickly identifying and picking items – ranging widely from packs of Craisins to cans of beef ravioli – in Pack Expo’s Robotics Zone during the three-day show.

“Random picking is quickly becoming one of the most sought-after automation tasks from industries such as e-commerce, fulfillment centers and warehousing,” says Regional Sales Director of Universal Robots’ Americas division, Stuart Shepherd. “At Pack Expo, Universal Robots and Allied Technology will demonstrate how UR cobots can be quickly deployed in a compact, modular system, handling the entire process from box erecting, to vision-guided conveyor tracking, part picking, tote assembly, pouch filling and sealing, kitting and palletizing,” he says, adding how the packaging line is also a testament to the capabilities of Universal Robots’ growing number of Certified System Integrators (CSIs). “Allied Technology was able to quickly create this fully-automated solution. We are delighted to see our cobots competently integrated in so many new packaging applications now.”

Allied Technology and Universal Robots’ packaging line features four UR cobots equipped with products from the UR+ platform that certifies grippers, vision cameras, software, and other peripherals to work seamlessly with UR’s collaborative robot arms. The latest flexible grasping technology will be showcased by a UR5e with Piab’s new Kenos® KCS vacuum gripper  guided by a vision camera from UR+ partner Cognex.

Once completed, the 1,200 bags of food will be delivered to “Blessings in a Backpack” a leader in the movement to end childhood hunger, ensuring that children receiving free or subsidized school lunches during the week do not go hungry over the weekends. “We look forward to showcasing this demo that is meaningful in so many ways,” says Shepherd. “We are excited to partner with Blessings in a Backpack while also addressing the needs of the packaging industry with solutions that will simplify and fast-track cobot deployment on their lines.”

Unlike traditional robots caged away from show attendees, visitors to the UR booth are able to walk right up to the UR cobots and interact with them. The booth “playpen area” will feature several cobot arms including a U53e with Robotiq’s new UR+ certified E-Pick Vacuum Gripper, allowing attendees to explore on-the-spot programming. The gripper is one of the recent additions in a rapidly expanding UR+ product portfolio that now includes no less than 195 UR+ certified products with 400+ companies participating in the UR+ developer program.

Market Leadership

Meanwhile, Universal Robots maintains top spot in ABI Research’s Ranking of Cobot Companies in Industrial Applications; Doosan, Techman Robot, and Precise Automation are closing in.

This news originates with ABI Research. There are well over 50 manufacturers of collaborative robots (cobots) worldwide, but only a handful of these companies have so far deployed cobots on any meaningful level of scale. Tens of thousands of cobots have been sold as of 2019 and earned US$500 million in annual revenue for world markets. In its new Industrial Collaborative Robots Competitive Assessment, global tech market advisory firm, ABI Research finds Universal Robots (UR) to be the clear forerunner, particularly in implementation.

The Industrial Collaborative Robots Competitive Assessment analyzed and ranked 12 collaborative robot vendors in the industry – ABB, Aubo Robotics, Automata, Doosan Robotics, FANUC, Franka Emika, Kuka AG, Precise Automation, Productive Robotics, Techman Robot, Universal Robots, and Yaskawa Motoman – using ABI Research’s proven, unbiased innovation/implementation criteria framework. For this competitive assessment, innovation criteria included payload, software, Ergonomics and human-machine interaction, experimentation and safety; implementation criteria focused on units and revenue, cost and ROI, partnerships, value-added services, and the number of employees.

“Market leaders in cobots generally have well-developed cobot rosters, in many cases backed up by an ecosystem platform that integrates applications, accessories, and end-of-arm-tooling (EOAT) solutions in with the base hardware,” said Rian Whitton, Senior Analyst at ABI Research. With 37,000 cobots sold so far, UR leads, followed by Taiwanese provider Techman with 10,000, and Korea-based Doosan with over 2,000. Precise Automation, which uses an advanced direct drive solution to develop faster collaborative robots, was cited as the most innovative of the 12 providers, just edging out Universal Robots, who claimed the overall top spot due to their significant lead in implementation.

There are several companies that are too young to be challenging the dominant parties in the cobot market but are developing new and disruptive technologies that will allow them rise to prominence in the years to come. Productive Robotics is a case-in-point. The California-based developer has an arm with inbuilt vision, 7 axes for superior flexibility, long reach, and a very affordable price point, but has yet to deploy at scale. Automata, a British company that develops a ‘desk-top’ cobot costing less than US$7,000, is significantly lowering the barriers to entry for smaller actors and is championing the use of open-source middleware like ROS to program cobots for industrial use-cases. Germany-based Franka Emika and Chinese-American provider Aubo Robotics also represent relatively new entrants to the market who are building on the success of Universal Robots and are beginning to compete with them.

Perhaps surprisingly, while the major industrial robotics providers have developed cobot lines, they have generally been less successful in marketing them or gaining market traction relative to the pure-cobot developers. In part, this is down to focus. While collaborative robots are valuable, they generally suit deployments and use-cases with smaller shipments and a wider variety of small and large end-users. For industrial players like ABB, FANUC, KUKA AG and Yaskawa Motoman, their client-base tends to be large industrial players who buy fixed automation solution through bulk orders. Aside from this, all four of these companies are competing extensively for greater shipment figures in China, where the cobot oppurtunity relative to the market for traditional industrial systems is much less apparent than in Europe or North America.

“Though many of the cobots deployed by these companies are impressive, and they have a lot of software services, the high-cost and lack of easy use among their systems largely defeat the current value proposition of cobots, making them the laggards in this competitive assessment.” says Whitton.

Looking forward, the larger industrial players are likely to improve their relative position, as future growth in cobots rests on scaling up and large deployments. “Universal Robots, though likely to remain the market leader for the foreseeable future, will be increasingly competing on an even footing with near-peer cobot developers, who are already developing second-generation cobots with significant hardware improvements. Meanwhile, some more innovative companies will be able to accelerate adoption through price decreases, improved flexibility, and common platforms to retrofit collaborative capability on industrial robots,” Whitton concluded.

These findings are from ABI Research’s Industrial Collaborative Robots Competitive Assessment report. This report is part of the company’s Industrial Solution, which includes research, data, and analyst insights. Competitive Assessment reports offer comprehensive analysis of implementation strategies and innovation, coupled with market share analysis, to offer unparalleled insight into a company’s performance and standing in comparison to its competitors.

Greater Investment In Autonomous Vehicles For Manufacturing Than Passenger

Greater Investment In Autonomous Vehicles For Manufacturing Than Passenger

Quick, when you think of self-driving cars and trucks and other news of autonomous vehicles, what comes to mind? OK, maybe an unfair question today given the Waymo v Uber lawsuit trial that began yesterday. But most of us think in terms of passenger cars rather than industrial uses.

PwC worked on a study and Bobby Bono (pictured), Carolyn Lee, and Todd Benigni all of PwC wrote a blog post, Can you be a first mover in industrial mobility? discussing the investment in manufacturing outdistancing the investment in passenger vehicles.

PwC Bobby Bono

When it comes to self-driving vehicles, passenger cars may grab most of the headlines, but they aren’t capturing most of the investment in the space. According to a PwC analysis, of the $6.8 billion raised by autonomous-transport startups since 2012, about 62% has gone to companies working on technology for vehicles ranging from drones to unmanned forklifts and tractor-trailers, all pieces of the larger ecosystem of industrial mobility.

Significantly, these investments in the pioneers of industrial mobility have been accelerating in recent years. From 2012 to 2014, companies working on automobiles received about as much investment ($660 million) as those building non-auto solutions ($702 million). But from 2015 to 2017, non-auto investment increased five-fold to $3.5 billion, while investment in companies working on tech for passenger cars rose a comparatively modest 188% to $1.9 billion.

Why does this matter? The rapid growth in capital pouring into startups working on industrial mobility reveals that hefty bets are being placed on the prospect that the impact of autonomous vehicles may well first made more forcibly upon industrial applications – even as self-driving passenger cars continue to capture consumers’ imagination.

Attitudes toward self-driving trucks are a good example of this cautious approach. Nearly two-thirds of respondents in the survey said they’ll wait and see how the technology evolves before adopting it. That’s especially interesting, given that most all survey respondents estimated that autonomous trucks could slash transportation costs by up to 25%. In a nutshell: they see the potential, but aren’t quite ready to jump in.

Cost is arguably the most important factor keeping manufacturers on the sidelines. The high cost of autonomous technology was the most frequently cited barrier to adoption in our survey, with nearly six in 10 respondents identifying it as a hurdle. At the same time, 86% said advanced industrial mobility’s ability to deliver a cost advantage was among the factors most likely to prompt them to embrace the technology.

With investment in industrial mobility surging, it’s a fair bet that businesses may see autonomous technology’s value proposition start to seem more attractive (and proven) sooner rather than later. And, it only stands to reason that some early adopters – and the early-stage companies developing the technology they implement – will score a competitive edge while their peers loiter on the sidelines.