While at the Hannover Messe Preview last week in Germany, I talked with the representatives of a German consortium with the interesting name of “it’s OWL”. Following are some thoughts from the various organizations that compose the consortium.

Intelligent production and new business models

Artificial Intelligence is of crucial importance for the competitiveness of industry. In the Leading-Edge Cluster it’s OWL six research institutes cooperate with more than 100 companies to develop practical solutions for small and medium-sized businesses. At the OWL joint stand (Hall 7, A12) over 40 exhibitors will demonstrate applications in the areas of machine diagnostics, predictive maintenance, process optimization, and robotics.

Prof. Dr. Roman Dumitrescu (Managing Director it’s OWL Clustermanagement GmbH and Director Fraunhofer IEM) explains: “Our research institutes are international leaders in the fields of machine learning, cognitive assistance systems and systems engineering. At our four universities and two Fraunhofer Institutes, 350 researchers are working on over 100 projects to make Artificial Intelligence usable for applications in industrial value creation. With it’s OWL, we bring this expert knowledge into practice. In 2020, we will launch three new strategic initiatives worth 50 million € to unlock the potential for AI in production, product development and the working world for small and medium-sized enterprises.”

In the initiative ‘AI Marketplace’ 20, research institutes and companies are developing a digital platform for Artificial Intelligence in product development. Providers, users, and experts can network and develop solutions on this platform. In the competence centre ‘AI in the working world of industrial SMEs’, 25 partners from industry and science make their knowledge of work structuring in the context of AI available to companies.

Learning machine diagnostics and ‘SmartBox’ for process optimization

The Institute for Industrial Information Technology at the OWL University of Applied Sciences and Arts will present new results for intelligent machine diagnostics at the trade fair. Using a three-phase motor, it will be illustrated how learning algorithms and information fusion can be used to reliably identify, predict, and visualize states of technical systems. Patterns and information hidden in time series signals are learned and presented to the user in an understandable way. Inaccuracies and uncertainties in individual sensors are solved by conflict-reducing information fusion. For example, motors can be used as sensors. Within a network of sensors and other data sources in production plants, motors can measure the “state of health” and analyze the causes of malfunctions via AI. This reduces scrap and saves up to 20 percent in materials.

The ‘SmartBox’ of the Fraunhofer Institute IOSB-INA is a universally applicable solution that identifies anomalies in processes in various production environments on the basis of PROFI-NET data. The solution requires no configuration and learns the process behavior.

With retrofitting solutions of the Fraunhofer Institute, companies can prepare machines and systems in their inventory for Industrie 4.0 applications without major investment expenditure. The spectrum ranges from mobile production data acquisition systems in suitcase format for studies of potential to permanently installable retrofit solutions. Intelligent sensor systems, cloud connections and machine learning methods build the basis for data analysis. This way, processes can be optimised and more transparency, control, planning, safety, and flexibility in production can be achieved.

Cognitive robotics and self-healing in autonomous systems

The Institute of Cognition and Robotics (CoR-Lab) presents a cognitive robotics system for highly flexible industrial production. The potential of model-driven software and system development for cognitive robotics is demonstrated by using the example of automated terminal assembly in switch cabinet construction. For this purpose, machine learning methods for environ- mental perception and object recognition, automated planning algorithms and model-based motion control are integrated into a robotic system. The cell operator is thereby enabled to perform different assembly tasks using reusable and combinable task blocks.

The research project “AI for Autonomous Systems” of the Software Innovation Campus Paderborn aims at achieving self-healing properties of autonomous technical systems based on the principles of natural immune systems. For this purpose, anomalies must be detected at runtime and the underlying causes must be independently diagnosed. Based on the localization it is necessary to plan and implement behavioral adjustments to restore the function. In addition, the security of the systems must be guaranteed at all times and system reliability must be increased. This requires a combination of methods of artificial intelligence, machine learning and biologically inspired algorithms.

Predictive maintenance and digital twin

Within the framework of the ‘BOOST 4.0’ project, the largest European initiative for Big Data in industry, it’s OWL is working with 50 partners from 16 countries on various application scenarios for Big Data in production. it’s OWL focuses on predictive maintenance: thanks to the systematic collection and evaluation of machine data from a hydraulic press and a material conveyor system, it is possible to identify patterns in the production process in a pilot company. The Fraunhofer IEM has provided the technological and methodological basis. And successfully so: over the past two years the prediction of machine failures has been significantly improved in this specific application by means of machine learning methods. The Mean Time To Repair (MTTR) has already been reduced by more than 30 percent. The Mean Time Between Failures (MTBF) is now six times longer than before. A model of the predictive production line can be seen at the stand.

The digital twin is an important prerequisite for increasing the potential for efficiency and productivity in all phases of the machine life cycle. Companies and research institutes are working on the technical infrastructure for digital twins in an it’s OWL project. Digital descriptions and sub-models of machines, products and equipment as well as their interaction over the entire life cycle are now accessible thanks to interoperability. Requirements from the fields of energy and production technology as well as existing Industrie 4.0 standards and IT systems are taken into account. This is expected to result in potential savings of over 50 percent. At the joint stand, Lenze and Phoenix Contact will use typical machine modules to demonstrate how digital twins can be used to exchange information between components, machines, visualisations and digital services across manufacturers. Interoperability proves for the first time how the combination of data can be used to create useful information with added value for different user groups. For example, machine operators and maintenance staff can detect anomalies and receive instructions for troubleshooting.

Connect and get started – production optimization made easy

The cooperation in the Leading-Edge Cluster gives rise to new business ideas that are developed into successful start-ups. For example, Prodaso—a spin-off from Bielefeld University of Applied Sciences—has developed a simple and quickly implementable solution for the acquisition and visualization of machine and production data. The hardware can be connected to a machine in a few minutes via plug-and-play. The machine data is displayed directly in the cloud.

Prodaso has succeeded in solving a central challenge: Until now, networking machines from different manufacturers have been complex and costly. The Prodaso system can be retrofitted to all existing systems, independent of manufacturer and interface. In addition, the start- up also provides automated analysis and optimization tools. This enables companies to detect irregularities and deviations in the process flow at an early stage and to initiate appropriate measures. The company, founded in 2019, has already connected approximately 100 machines at companies in the manufacturing industry.

Share This