IMTS 2018 Features Variety of Manufacturing Technologies

IMTS 2018 Features Variety of Manufacturing Technologies

IMTS has been a huge show for many years. As you might expect from a trade show, the theme is broad. Exhibitors are a diverse lot. Things I saw indicating a new wave of technologies including machines designed to work with humans (so-called “cobots”) and various aspects of Industrial Internet of Things. Following are a few specifics.

Formerly the International Machine Tool Show and now the International Manufacturing Technology Show, the South Hall of Chicago’s McCormick Place is still filled with huge machining centers. The North Hall was packed with robotics, components, and other automation products. Much of this flows over to the East Hall where several aisles were devoted to Hannover Messe automation companies—my sweet spot. Even the West Hall was packed.

Beckhoff proclaimed, “Solve the IoT hardware, software and networking puzzle.”

The company introduced ultra-compact Industrial PCs (IPCs). These IPCs are Microsoft Azure Certified and can work just as easily with other major cloud platforms such as Amazon Web Services (AWS) and SAP HANA.

Significant updates will span three key areas of the TwinCAT software suite: new HTML5-enabled TwinCAT HMI for industrial displays and mobile devices, important data processing expansions in the TwinCAT Analytics offering, and TwinCAT 3 Motion Designer, which adds a deep set of valuable tools to commission entire motor, drive and mechanical systems in software. Motion Designer can be integrated into the standard TwinCAT 3 software platform or it can be used as a stand-alone motion system engineering tool.

EK1000 EtherCAT TSN Coupler expands the industrial Ethernet capabilities of the EtherCAT I/O system to utilize TSN (Time-Sensitive Networking) technology. The EK1000 enables communication among high-performance EtherCAT segments with remote EtherCAT controllers via heterogeneous Ethernet networks.

Ideagen plc, the UK-based software firm, announced the acquisition of American quality inspection software provider, InspectionXpert. Based in Raleigh, North Carolina, InspectionXpert currently generates $2.8 million in revenue and will bring more than 1,000 clients including Boeing, Kohler and Pratt & Whitney to Ideagen’s existing customer base.

Speaking at IMTS, Chicago, Ideagen CEO, Ben Dorks, said: “As well as significantly enhancing our manufacturing supply chain product suite, the acquisition of InspectionXpert provides Ideagen with a fantastic opportunity for growth by broadening upsell and cross-selling opportunities, increasing our customer footprint and expanding our geographical reach.”

InspectionXpert’s products, InspectionXpert and QualityXpert, enable organizations in the precision manufacturing industry and associated supply chains to simplify inspection planning, execution and reporting and general quality through digitalization of paper-based processes.

InspectionXpert and QualityXpert will be integrated into Ideagen’s existing software suite, which will enhance Software as a Service (SaaS) revenues and provide excellent opportunities for future growth.

Energid released Actin 5, an update to its robot software development kit (SDK). Called the industry’s only real-time adaptive motion control software, it allows robotic system developers to focus on the robot’s task rather than joint movement and paths. It responds in real time to sensory input and directs the robot on the most efficient path while avoiding collisions. The robot motion is updated dynamically without requiring reprogramming, even in dynamic, mission-critical environments.

Forcam develops software solutions in the area of MES, IIoT, and OEE. It leans into the trend of developing platforms. Its platform is built with open APIs with the latest programming languages and tools. It supports Microsoft Azure Cloud, SAP ERP, Maximo maintenance/asset applications, and Apple iPads for input. The platform helps reduce integration time and expense.

I came across the Dell Technologies booth in the automation hall. The big news was a collaboration with Tridium and Intel for IIoT solutions.

The IIoT solution is built on the Niagara Framework, Tridium’s open technology platform, and combines software and consulting services to help customers begin the digital transformation of their businesses.

The Niagara-based IIoT solution built with Dell and Intel technology will comprise a complete hardware and software stack delivered as a finished solution for ease of adoption, and will encompass consulting services from subject matter experts to support implementation. The application layer of the IIoT solution is being developed and supported by Tridium and will expand over time with solutions designed for the telecom and energy sectors.

Industrial Networking Enabling IIoT Communication White Paper

Industrial Networking Enabling IIoT Communication White Paper

Industrial Networking Enabling IIoT Communication white paper

Working consortia of companies and individuals researching a technology provide great guidance for users of the technology—usually in the form of white papers. The Industrial Internet Consortium (IIC) has been especially prolific lately. This means many companies and individuals see the importance of donating time and expertise to the cause.

The IIC has announced the IIC Industrial Networking Enabling IIoT Communication white paper. The paper serves as an introductory guide on industrial networking for IIoT system designers and network engineers, and offers practical solutions based on key usage scenarios.

“Industrial networking is the foundation of IIoT,” said David Zhe Lou, Chief Researcher, Huawei Technologies. “There are many choices of networking technologies depending on the application, the industrial network, deployment situation and conditions, but there is no universal or preferred industrial networking solution.”

Industrial networking infrastructure and technologies reside at the IP layer and below, and enable industrial assets, such as machines, sites and environments, to connect to the business professionals supporting applications across a wide range of industry sectors. Industrial networking technologies provide the foundation for applications that enable manufacturing productivity and profitability.

“IIoT applications have different needs depending on the industrial application and therefore demand robust, flexible and secure networks,” said Cliff Whitehead, Business Development Manager, Rockwell Automation. “This white paper will help IIoT system designers and network engineers understand the tradeoffs they can consider when designing an industrial network architecture that will be a strong foundation for current and future IIoT scenarios.”

Industrial networking is different from networking for the enterprise or networking for consumers. For example, IIoT system designers and network engineers need to make decisions about using wired or wireless communications. They have to figure out how to support mobility applications such as vehicles, equipment, robots and workers. They must also consider the lifecycle of deployments, physical conditions, such as those found in mining and agriculture, and technical requirements, which can vary from relaxed to highly demanding.

“Networking technologies range from industry-specific to universal, such as the emerging 5G, which meets diverse industrial needs,” continued Jan Höller, Research Fellow at Ericsson. “Industrial developers need guidance when devising solutions to select the right networking technologies, and this white paper is the first step to providing the missing methods and tools.”

The Industrial Networking Enabling IIoT Communication white paper sets the stage for the Industrial Internet Network Framework (IINF), which will complement the Industrial Internet Connectivity Framework (IICF) by detailing requirements and best available technologies for the lower three layers of the industrial internet communication stack.

The full IIC Industrial Networking Enabling IIoT Communication white paper and a list of IIC members who contributed can be found on the IIC website:

The Industrial Internet Consortium is a program of the Object Management Group (OMG).

Defining Your IoT Terms Such As Edge and IT/OT Convergence

Defining Your IoT Terms Such As Edge and IT/OT Convergence

Defining terms enhances effectiveness of communication—especially in this new Industrial Internet of Things (IoT) space. The Industrial Internet Consortium (IIC) leads the way bringing companies and people together to accomplish this sort of work.

I floated a definition of edge a little while ago and got an interesting reaction on Twitter. Let’s see how this one flies.

IIC announced V2.1 of the Industrial Internet Vocabulary Technical Report. Designed to reduce confusion in the marketplace, the report is a foundational document that provides a common set of definitions for IIoT terms used in all IIC documents. It is also intended as a reference for anyone working in IIoT, including those in IT, OT and vertical industries.

The report adds definitions for terms used in data management, edge and edge computing, IT/OT convergence, connectivity, interoperability, brownfield and greenfield.

“People from different backgrounds and different vertical industries will often use different terms to mean the same thing. Additionally, the industrial internet has core concepts that mean different things to different people,” said Anish Karmarkar, Co-Chair of the Vocabulary Task Group, and Senior Director, Standards Strategy & Architecture at Oracle. “Without an agreed upon vocabulary, there’s a lot of room for misunderstandings. For example, we’ve defined IT/OT convergence as a process of interweaving IT and OT in order to create IIoT systems. While IT/OT convergence is a hot topic today, not everyone is on the same page as to what it exactly means.”

The report provides definitions for data management, including data, data at rest, data in motion, data in use, data integrity and many others to make communication on this subject easier for IIoT stakeholders. The report also clears up confusion on “connectivity” and “interoperability,” which IIoT stakeholders often mix up. “Connectivity” means the ability of a system or app to communicate with other systems or apps via networks. “Interoperability” means the ability of two or more systems or apps to exchange and use that information.

“Edge and edge computing are hotly debated topics in IIoT this year,” said Marcellus Buchheit, one of the primary authors of the IIC IIoT Vocabulary Technical Report, and President & CEO, WIBU-SYSTEMS USA Inc. and Co-Founder, WIBU-SYSTEMS AG. “IIoT stakeholders in every industry have been asking ‘where is the edge,’ or ‘what is edge computing.’ The report defines the ‘edge’ as the boundary between pertinent digital and physical entities, delineated by IoT devices, and ‘edge computing’ as distributed computing that is performed near the edge, where the nearness is determined by the system requirements. At the moment, the IIC is the only consortia to provide definitions for ‘edge’ and ‘edge computing.’”

Read the IIC Journal of Innovation September 2017: Edge Computing to learn even more about edge computing. JOI articles show that by moving compute closer to data sources, edge computing allows for faster sense-analyze-response cycles, which is important for running mission-critical, real-time IIoT applications such as equipment monitoring or autonomous machinery.

Industrial Software Companies Make Financial Moves

Industrial Software Companies Make Financial Moves

For the past couple of years, I’ve been convinced that there is a coming consolidation within the industrial software market. You would think that this would be a profitable business, but evidently it’s harder than it looks.

This thought converges with all the Industrial Internet of Things plays. We have platforms and a large variety of software—not to mention a variety of hardware plays. As buyers begin to sort out preferences, there will be changes.

GE Digital on the block

I was trying to figure out where GE was going to wind up in all this. Last fall I thought that GE Digital’s Minds + Machines conference was doomed. Then the 2018 edition was announced. Then yesterday morning I scan news feeds about 6 am and see that most of the GE Digital assets are on the auction block—evidently including Predix.

GE had a “not invented here” syndrome. Rolling your own platforms when other tried and perfected ones already exist is always shaky. So the new CEO mandated partnerships. There’s no reason to build a platform when Amazon’s AWS and Microsoft’s Azure are available. Now it appears that much of the portfolio is for sale.

Investments

But all is not lost. At the smaller end of the spectrum of industrial software there is investment money available according to a note I received from OSIsoft. The note pointed out IIoT company Seeq raised $23 million; Trendminer, Falkonry and Toumetis all recently received investments; and last year, SoftBank also invested in OSIsoft.

When we are consolidating at the top, that usually means it’s time for innovation in the newly available openings for small companies.

Consolidation

I could obviously point to PTC doing its part to consolidate in the IoT software space. But news just came about Plex Systems, a cloud-based ERP and MES supplier.

It announced it has acquired DATTUS Inc. Its solutions connect manufacturing equipment and sensors to the cloud, manage high-volume data streams, and analyze in-motion equipment data. The acquisition is expected to accelerate Plex’s IIoT strategy, extending the Plex Manufacturing Cloud to new streams of machine data and the underlying intelligence. The acquisition was completed in July 2018.

DATTUS brings to the Plex Manufacturing Cloud three major capabilities that will become central to Plex’s long-term IIoT roadmap: IIoT Connectivity, IIoT Data Management, and IIoT Data Analysis. IIoT Connectivity: DATTUS has simplified machine connectivity, providing plug-and-play solutions that work with the wide variety of protocols and data types used by equipment and sensors on the manufacturing shop floor. IIoT Data Management: the DATTUS IIoT platform captures and manages the extraordinary volume and variety of machine data to support real-time visibility into activity across production operations. IIoT Data Analysis: DATTUS analytics enable operational and business leaders to understand IIoT data in motion, providing decision support in areas such as predictive maintenance and machine performance.

Eight Transformative Technologies

Eight Transformative Technologies

Everybody has a list of transformative technologies. A news release from an advisory firm, ABI Research, came my way a few weeks ago. Its analysts came together and compiled a list of eight technologies they feel will be transformative in manufacturing and then they fit them with Smart Manufacturing. That latter phrase is one of the descriptors for the new wave of manufacturing strategy and technology.

We will have difficulty contesting the list. Most of these are, indeed, already well along the adoption path. I find it interesting that they refer to IIoT platforms, but they don’t view those as transforming technologies but rather as a sort of sandbox for the technologies to play in.

[This is a Gary aside—when an analyst firm makes a list of suppliers, I’d advise not considering it to be comprehensive. Rather the list is usually comprised of companies that the firm’s analysts get to sit down with and receive in-depth briefings.]

The ABI report identifies eight transformative technologies:

1 Additive manufacturing

2 Artificial intelligence (AI) and machine learning (ML)

3 Augmented reality (AR)

4 Blockchain

5 Digital twins

6 Edge intelligence

7 Industrial Internet of Things (IIoT) platforms

8 Robotics

From the ABI news release, “The manufacturing sector has already seen increased adoption of IIoT platforms and edge intelligence. Over the next ten years, manufacturers will start to piece together the other new technologies that will eventually lead to more dynamic factories less dependent on fixed assembly lines and immobile assets. Each step in this transformation will make plants and their workers more productive.”

“Manufacturers want technologies they can implement now without disrupting their operations,” says Pierce Owen, Principal Analyst at ABI Research. “They will change the way their employees perform jobs with technology if it will make them more productive, but they have no desire to rip out their entire infrastructure to try something new. This means technologies that can leverage existing equipment and infrastructure, such as edge intelligence, have the most immediate opportunity.”

ABI summary of its research

The transition towards a lights-out factory has started, but such a major disruption will require an overhaul of workforces, IT architecture, physical facilities and equipment and full integration of dozens of new technologies including connectivity, additive manufacturing, drones, mobile collaborative robotics, IIoT platforms and AI.

IIoT platforms must support many of these other technologies to better integrate them with the enterprise and each other. Those that can connect and support equipment from multiple manufacturers, such as PTC Thingworx and Telit deviceWISE, will last.

After decades of producing little more than prototypes, the AM winter has ended and new growth has sprung up. GE placed significant bets on AM by acquiring Arcam and Concept laser in 2016, and Siemens announced an AM platform in April 2018. Other leading AM specialists include EOS, Stratasys, HP and 3D Systems.

ML capabilities and simulation software have made digital twins extremely useful for product development, production planning, product-aaS, asset monitoring and performance optimization. Companies with assets that they cannot easily inspect regularly will significantly benefit from exact, 3D digital twins, and companies that manufacture high-value assets should offer digital twin monitoring as-a-service for new revenue streams. Innovative vendors in digital twins and simulation software include PTC, SAP, Siemens, and ANSYS.

The above technologies have already started to converge, and robotics provide a physical representation of this convergence. Robotics use AI and computer vision and connect to IIoT platforms where they have digital twins. This connectivity and AI will increase in importance as more cobots join the assembly line and work alongside humans. The robotics vendors that can integrate the most deeply with other transformative technologies have the biggest opportunity. Such vendors include the likes of ABB, KUKA, FANUC, Universal Robots, Rethink Robotics and Yaskawa.

“The vendors that open up their technologies and integrate with both existing equipment and infrastructure and other new transformative technologies will carve out a share of this growing opportunity. Implementation will go step-by-step over multiple decades, but ultimately, how we produce goods will change drastically from what we see today,” concludes Owen.

Follow

Follow this blog

Get every new post delivered right to your inbox.