Artificial Intelligence, always known as AI, along with its sometime companion robots leads the mainstream media hype cycle. It’s going to put everyone out of jobs, destroy civilization as we know it, and probable destroy the planet.

I lived through the Japanese robotic revolution-that-wasn’t in the 80s. Media loved stories about robots taking over and how Japan was going to rule the industrialized world because they had so many. Probing the details told an entirely different story. Japan and the US counted robots differently. What we called simple pick-and-place mechanisms they called robots.

What set Japanese industrial companies apart in those days was not technology. It was management. The Toyota Production Method (aka Lean Manufacturing) turned the manufacturing world on its head.

My take for years based on living in manufacturing and selling and installing automation has been, and still is, that much of this technology actually assisted humans—it performed the dangerous work, removing humans from danger, taking over repetitive tasks that lead to long-term stress related injuries, and performing work humans realistically couldn’t do.

Now for AI. This press release went out the other day, “With AI, humans and machines work smarter and better, together.” So, I was intrigued. How do they define AI and what does it do?

Sensai, an augmented productivity platform for manufacturing operations, recently announced the launch of its pilot program in the United States. Sensai increases throughput and decreases downtime with an AI technology that enables manufacturing operations teams to effectively monitor machinery, accurately diagnose problems before they happen and quickly implement solutions.

The company says it empowers both people and digital transformation using a cloud-based collaboration hub.

“The possibility for momentous change within manufacturing operations through digital transformation is here and now,” said Porfirio Lima, CEO of Sensai. “As an augmented productivity platform, Sensai integrates seamlessly into old or new machinery and instantly maximizes uptime and productivity by harnessing the power of real time data, analytics and predictive AI. Armed with this information, every person involved – from the shop floor to the top floor – has the power to make better and faster decisions to increase productivity. Sensai is a true digital partner for the operations and maintenance team as the manufacturing industry takes the next step in digital transformation.”

By installing a set of non-invasive wireless sensors that interconnect through a smart mesh network of gateways, Sensai collects data through its IIoT Hub, gateways and sensors, and sends it to the cloud or an on-premise location to be processed and secured. Data visualization and collaboration are fostered through user-friendly dashboards, mobile applications and cloud-based connectivity to machinery.

The AI part

Sensai’s differentiator is that it provides a full state of awareness, not only of the current status, but also of the future conditions of the people, assets and processes on the manufacturing floor. Sensai will learn a businesses’ process and systems with coaching from machine operators, process and maintenance engineers. It will then make recommendations based on repeating patterns that were not previously detected. Sensai does this by assessing the team’s experiences and historical data from the knowledge base and cross checking patterns of previous failures against a real-time feed. With this information, Sensai provides recommendations to avoid costly downtime and production shutdowns. Sensai is a true digital peer connecting variables in ways that are not humanly possible to process at the speed required on a today’s modern plant floor.

About the Pilot Program

Participation in Sensai’s pilot program is possible now for interested manufacturers. Already incorporated throughout Metalsa, a leading global manufacturer of automotive structural components, Sensai is set to digitally disrupt the manufacturing industry through AI, including those in automotive, heavy metal and stamping, construction materials, consumer goods and more.

Porfirio Lima, Sensai CEO, answered a number of follow up questions I had. (I hate when I receive press releases with lots of vague benefits and buzz words.)

1. You mention AI, What specifically is meant by AI and how is it used?

Sensai uses many different aspects of Artificial Intelligence. We are specifically focused on machine learning (ML), natural language processing (NLP), deep learning, data science, and predictive analytics. When used together correctly, these tools serve a specific use case allowing us to generate knowledge from the resulting data. We use NLP to enable human and computer interaction helping us derive meaning from human input. We use ML and deep learning to learn from data and create predictive and statistical models. Finally, we use data science and predictive analytics to extract insights from the unstructured data deriving from multiple sources. All of these tools and techniques allow us to cultivate an environment of meaningful data that is coming from people, sensors, programmable logistics controllers (PLCs) and business systems.

2. “Learn processes through operators”—How do you get the input, how do you log it, how does it feed it back?

Our primary sources of data (inputs) are people, sensors, PLCs, and business systems. In the case of people on the shop floor or operators, we created a very intuitive and easy to use interface that they can use on their cellphones or in the Human Machine Interfaces (HMIs) that are installed in their machines, so they can give us feedback about the root causes of failures and machine stoppages. We acquire this data in real-time and utilize complex machine learning algorithms to generate knowledge that people can use in their day-to-day operations. Currently, we offer web and mobile interfaces so that users can quickly consume this knowledge to make decisions. We then store their decisions in our system and correlate it with the existing data allowing us to optimize their decision-making process through time. The more a set of decisions and conditions repeats, the easier for our system is to determine the expected outcome of a given set of data.

3. Pattern? What patterns? How is it derived? Where did the data come from? How is it displayed to managers/engineers?

We create “digital fingerprints” (patterns) with ALL the data we are collecting. These “patterns” allow us to see how indicators look before a failure occurs, enabling us to then predict when another failure will happen. Data comes from the machine operators, the machines or equipment, our sensors, and other systems that have been integrated to Sensai’s IIOT hub.

We trigger alerts to let managers and engineers know that a specific situation is happening. They are then able to review it in their cellphones as a push notification that takes them to a detailed description of the condition in their web browser where they can review more information in depth.

4. What specifically are you looking for from the pilots?

We are not a cumbersome solution, for us is all about staying true about agility and value creation. We look for pilots that can give us four main outcomes:

– Learn more about our customer needs and how to better serve them

– A clear business case that can deliver ROI in less than 6 months after implementation and can begin demonstrating value in less than 3 months.

– A pilot that is easy to scale up and replicate across the organization so we can take the findings from the pilot and capitalize them in a short period of time.

– A pilot that can help Sensai and its customers create a state of suspended disbelief that technology can truly deliver the value that is intended and that can be quickly deployed across the entire organization.

Share This

Follow this blog

Get a weekly email of all new posts.