Swift Sensors, Cloud, Managed Services

I had a friend who has since retired who speculated on what one could do with the data from sensors installed all over a large petroleum or petro-chemical production facility. Just think of what you could know in order to be able to manage the entire facility, he’d exclaim. Recently I interviewed a team at a large automation supplier who discussed concentrating data from sensors and inputs from large machine lines into a PLC.

Sometimes the project you’re contemplating or the business model you have requires thousands of sensors, many gateways, large compute power. What if you built a business model that is profitable servicing different customer needs? What if instead of a few customers buying thousands of sensors you had thousands of customers who needed only a few sensors in each area? Sounds like Chris Anderson’s The Long Tail.

Ray Almgren, President and CEO of Swift Sensors, recently took time out to talk with me about what’s happening there. When I first met Swift Sensors about five years ago, it reminded me of the companies built up around the ZigBee wireless mesh networking standard of about 20 years before. Much progress in terms of products and business models has come the past couple of years.

Swift has designed more robust sensors and developed gateways and cloud-based software making life better for customers. It has found a place in that long tail of many companies who require fewer sensors per location but have many locations. Working with managed services suppliers mostly from the IT market has proved to be a good channel for recurring revenue from satisfying customers’ ongoing needs.

I’ve promoted to a subset of suppliers for years to look outside traditional manufacturing for expanded markets. Swift Sensors markets to schools, pharma companies, agriculture, hospitality, small manufacturing. There continues to be a robust market for taking 4-20 mA signals to the cloud. That’s sort of a cave man meets StarTrek scenario, but still fills a need.

I suggest keeping an eye on the Managed Services, or “as-a-Service”, area for growth if you are a supplier and better service if you are a user.

Following is more description of the latest of Swift Sensors from its Website.

Swift Sensors is a simple and cost-effective solution for the automated monitoring of all your important assets. There are three components of the Swift Sensors system: 

Sensors. The Sensors record measurement readings and transmit this vital information wirelessly using encrypted BLE5 technology to the Gateway.

Gateway. The Gateway transmits the measurement readings up to the cloud over a SSL-secured WiFi, ethernet or cellular connection.

Cloud Software. You can access your secure cloud account right from your phone, desktop, laptop, or tablet. Check readings, create thresholds, monitor alerts, leave notes, review historical data and export reports.

Sensors are powered with 2 AAA lithium polymer batteries with an average lifespan of 6 – 8 years. Sensors can be powered on or put into sleep mode by pressing the center of the sensor. A green LED in the sensor blinks when the sensor powers on, turns solid when transitioning to sleep mode, and will blink when the “Find my Sensor” command is sent from the Console. All sensors send encrypted data to the gateway.

The Cloud makes it simple and easy to store sensor data without the hassle of setting up wires, servers and storage devices. Our state-of-the-art console combined with our seamless integration of cloud sensing technology allows you to work without the stress of monitoring your data 24/7. The Swift Sensors Console gives you the peace of mind knowing your equipment, products, and facility are monitored 24/7. Notifications can be set based on specific thresholds that you apply to specific measurements. These thresholds, whether set low or high, can trigger email, SMS, or phone call notifications that are sent immediately when a problem occurs. This security not only helps optimize your facility but also prevent the most catastrophic events. Third-party developers can create their own custom front-end web or mobile app to display and manage Swift Sensors data and hardware. Web API documentation is available for free, and provides full access to the Swift Sensors cloud system. APIs can be found here.

Neurala Raises $12 Million to Scale Artificial Intelligence for Industrial Manufacturing

Funding isn’t my primary interest, but this one has interest because of all the hype around artificial intelligence (AI). I continue to see articles in major media that imply that AI is a sort of Star Trek technology rather than something we’ve been using for 30 years or so. However, Neurala has been feeding me a lot of news this year about advances in its vision AI software. Now it has more money to further its development.

Neurala, the leader in vision AI software, announced that it has raised $12 million in funding to advance the development of vision AI for manufacturing. The round, led by Zebra Ventures and Pelion Venture Partners, with participation from Draper Associates, Friulia, AddValue, 360 Capital Partners, Idinvest Partners, Cougar Capital, and industrial investors IMA and Antares Vision, brings the total invested in Neurala to $26 million.

The funding will enable Neurala to evolve and accelerate adoption of its vision AI in the industrial and manufacturing sectors on a global scale, as manufacturers increasingly prioritize automation as part of Industry 4.0 initiatives.

Neurala is a pioneer in vision AI for manufacturing. Built on the company’s deep AI expertise, Neurala’s VIA software delivers an integrated solution designed to help manufacturers improve quality inspection on the production line. With VIA, manufacturers are empowered to answer the call for increased productivity, accuracy and speed.

In the last twelve months, the company has increased its capacity to identify and resolve problems in manufacturing facilities through expert system integrator partners and well-entrenched suppliers. In addition to expanding its work with system integrators threefold, Neurala has also worked with an ever-growing number of OEMs, including investors IMA, IHI Logistics & Machinery and FLIR, to deliver easy-to-use AI solutions that will improve the speed and efficiency of inspections at a price point that makes them affordable for a wide range of customers.

The funding comes at a time when manufacturers are increasingly focused on AI and automation as a key tool in their ability to adapt to new realities established by the pandemic. With this funding, Neurala will be able to evolve VIA to make it more efficient for a wider range of applications and use cases.

“This past year we were able to turn a global crisis into an opportunity to both completely transform our business and to catalyze much-needed innovation in the AI space,” said Max Versace, CEO and co-founder of Neurala. “There was always an opportunity for AI and automation to improve manufacturing, but the pandemic really accelerated the industry’s willingness to embrace the technology. Our team has worked relentlessly over the last year to introduce VIA to partners and customers across the globe, and now that the world is ready to embrace it, we are ready to deliver it. The funding will enable us to do that at a much greater scale that meets the demand we’re seeing in the space.”

This funding comes on the heels of the launch of Neurala’s subsidiary, Neurala Europe, based in Trieste, Italy. The new capital represents the next phase of growth for Neurala as it will be used to expand upon its newfound global presence as the company continues to help manufacturers around the world harness the power of vision AI.

“Today’s manufacturers are leveraging AI and automation to address challenges such as production constraints, supply chain disruptions, and imperfect workforce availability,” said Tony Palcheck, managing director of Zebra Ventures. “Zebra Technologies is proud to invest in Neurala as it commercializes VIA software to enable faster, more cost-effective, easy-to-deploy solutions for customers looking to improve their decision making and productivity on the production line.”

“As a long-time investor in Neurala, we have always recognized the power of its technology to enable smarter, autonomous decision-making in real-world scenarios,” said Ben Lambert, General Partner at Pelion Venture Partners. “Now we’re seeing a significant impact as Neurala has focused on applications in industrial and manufacturing. There’s a big opportunity for Neurala to grow that presence, not only in the US, but in Europe, Asia and beyond. We are excited to support the Neurala team in that journey as we know that it has the right team, the cutting-edge technology, and the global reach to capitalize on this significant market opportunity. “

Google Cloud Visual Inspection AI For Manufacturing Quality Control

What these cloud companies are doing with their platforms is becoming amazing. This news is from Google—a little later than first Amazon Web Services and then Microsoft Azure. It is quickly adding some interesting capabilities. Once again, we’re seeing artificial intelligence (AI) built into so many applications that we should cease to have surprise and awe. It’s a tool—and a powerful one if used appropriately. Check out this vision inspection solution.

Google Cloud today launched Visual Inspection AI, a new purpose-built solution to help manufacturers, consumer packaged goods companies, and other businesses worldwide reduce defects and deliver significant operational savings from the manufacturing and inspection process. 

Today, defects in products such as computer chips, cars, machinery, and other products cost manufacturers billions of dollars annually. In fact, quality-related costs can consume 15% to 20% of sales revenue[1]. In addition, high production volumes outpace the ability of humans to manually inspect each part. 

Google Cloud has traditionally supported manufacturing quality control through its general purpose AI product, AutoML. Today, it is taking the next step by offering a purpose-built solution for manufacturers. Using Google Cloud’s leading computer vision technology, Visual Inspection AI automates the quality control process, enabling manufacturers to quickly and accurately detect defects before products are shipped. By identifying defects early in the process, customers can improve production throughput, increase yields, reduce rework, and reduce return and repair costs. Visual Inspection AI operates across a wide range of industries and use cases, potentially saving manufacturers millions of dollars at each facility

Based on pilots run by Google Cloud customers, Visual Inspection AI can build accurate models with up to 300 times fewer human-labelled images than general-purpose ML platforms. This allows the solution to be deployed quickly and easily in any manufacturing setting. In addition, Visual Inspection AI customers improved accuracy in production trials by up to 10X compared with general-purpose ML approaches. And, unlike competing solutions that use simple anomaly detection, Visual Inspection AI’s deep learning allows customers to train models that detect, classify, and precisely locate multiple defect types in a single image. 

“AI has proven to be particularly beneficial in helping to automate the visual quality control process for manufacturers—a particular pain point felt by the industry. We’ve been delighted by the strong interest in Visual Inspection AI, and we look forward to supporting more organizations as they continue to find innovative new ways to deploy AI at scale,” said Dominik Wee, Managing Director Manufacturing and Industrial at Google Cloud. 

“We’ve been listening to the specific needs of the industry and have brought the best of Google AI technologies to help address those needs. The outcome is an AI solution that, built upon years of computer vision expertise, is purpose-built to solve quality control problems for nearly any type of discrete manufacturing process,” said Mandeep Waraich, Head of Product for Industrial AI at Google Cloud.

Building and training machine learning models typically requires deep AI expertise, as well as extensive databases containing thousands of labelled images. Such systems usually run in an on-premise data center or in the cloud, making them difficult to deploy at scale across the factory floor. With Google Cloud Visual Inspection AI:

  • No special expertise is required. Quality, test, and manufacturing engineers can use the solution without any computer vision or AI subject-matter expertise. An intuitive user interface guides employees through all of the necessary steps. 
  • Engineers can get started quickly and build more accurate models. Machine learning models can be trained using as few as 10 labelled images (vs. thousands) and will automatically increase in accuracy over time as they are exposed to more products.
  • Full edge-to-cloud capability: Inspection models can be downloaded to machines on the factory floor and run autonomously at the edge, whether it be for data governance reasons or to improve latency. At the same time, Visual Inspection AI is fully integrated in Google Cloud’s portfolio of analytics and ML/AI solutions. This enables manufacturers to combine insights from Visual Inspection AI with other data sources on the shop floor and beyond, for instance to identify root causes of quality problems or to cross-reference with supplier and customer data.
  • Problems are resolved faster. Not only does the solution flag a defective component, but also Visual Inspection AI can locate and identify the specific defect within each part, which reduces the time spent by engineers to diagnose problems, rework parts, and implement process improvements. 

“Google Cloud’s approach to visual inspection is the roadmap most manufacturing companies are looking for. Manufacturers want flexibility, scale, inherent edge-to-cloud capabilities, access to both real-time and historical data, and ease of use and maintainability”, said Kevin Prouty, Group Vice President at IDC. “Google is one of those companies that has the potential to bring together IT, OT and an ecosystem of partners that manufacturers need to deploy AI on the shop floor at scale.”

Wide Range of Use Cases for Visual Inspection AI

Automotive manufacturers: A typical vehicle factory produces around 300,000 vehicles each year, and up to 10% of them may have parts that underwent rework or replacement during the manufacturing process to address some type of production defect [2]. By automatically identifying defects in paint finish, seat fabrication, body welds, and end-of-line testing of mechanical parts, Visual Inspection AI could save automakers more than $50 million annually per plant. 

“Google Cloud’s strength in machine learning and artificial intelligence is accelerating Renault’s Industry 4.0 transformation. We are adopting innovative computer vision solutions like Visual Inspection AI, AutoML and Vertex AI to implement more accurate quality controls with a significantly reduced time to market at a lower cost. We are working now on deploying these new tools in every Renault factory. Renault is ready for future-oriented manufacturing and welcomes the partnership with Google Cloud,” said Dominique Tachet, Digital Project Leader, Renault.

Electronics manufacturing services (EMS): Of the 15 million circuit boards produced each year in a typical EMS factory, as many as 6% may be reworked or scrapped during the assembly process due to internal or external quality failures, such as soldering errors or missing screws [3]. Reducing rework and material waste can save such a facility nearly $23 million each year. 

“It’s been amazing to work with Google Cloud to bring innovative machine learning and computer vision technologies to our quality processes. Engineers from FIH Mobile, a subsidiary of Foxconn, trust Google Cloud and we are achieving considerable product improvements through our collaboration. We cannot wait to roll out the Visual Inspection AI solution further across our extensive PCB manufacturing operations.” said Sabcat Shih, Senior Associate Manager, FIH Mobile.

Semiconductor production: A chip fabrication plant that produces 600,000 wafers per year could see yield losses of up to 3% from cracks and other defects [4]. Implementing Visual Inspection AI can reduce production delays and scrap, saving up to $56 million per fab.

“With the shortage of AI engineers, Visual Inspection AI is an innovative service that can be used by non-AI engineers. We have found that we are able to create highly accurate models with as few as 10-20 defective images with Visual Inspection AI. We will continue to strengthen our partnership with Google to develop solutions that will lead our customers’ digital transformation projects to success.” said Masaharu Akieda, Division Manager, Digital Solution Division, KYOCERA Communication Systems Co., Ltd.

[1] “Cost of Quality,” American Society for Quality (ASQ).

[2] “Internal documents reveal the grueling way Tesla hit its 5,000 Model 3 target,” Business Insider

[3] “Capturing the value of good quality in medical devices,” McKinsey & Company

[4] “Taking the next leap forward in semiconductor yield improvement,” McKinsey & Company

Additional Resources

  • Visual Inspection AI solution webpage
  • Visual Inspection AI launch blog
  • Visual Inspection AI overview video
  • FIH Mobile case study
  • Keep up with the latest Google Cloud news on our newsroom and blog

Google Cloud accelerates organizations’ ability to digitally transform their business with the best infrastructure, platform, industry solutions and expertise. We deliver enterprise-grade cloud solutions that leverage Google’s cutting-edge technology to help companies operate more efficiently and adapt to changing needs, giving customers a foundation for the future. Customers in more than 200 countries and territories turn to Google Cloud as their trusted partner to solve their most critical business problems.

ABB News Includes Power Over Ethernet and EV Battery Manufacturing

One company consistently sending news is ABB. PR on the process side has moved to Europe, but robotic and related PR is still handled locally. I find it interesting that the major European suppliers have moved marketing out of the US, while some US-based suppliers have just pulled back. Not sure what they know about US manufacturing that I should know.

Technology additions to Ethernet have become interesting. They’ve existed a while, but products and momentum are growing. One is 2-wire Ethernet; but this news relates to power over Ethernet. ABB has released a flowmeter. The other news relates to a hot topic—electric vehicle (EV) battery manufacturing. This will remain a focus for quite some time.

ABB launches world’s first Power over Ethernet flowmeters

ABB has incorporated power supply through Ethernet connectivity on board the latest edition of its electromagnetic flowmeter ProcessMaster* and mass flowmeter CoriolisMaster, opening a new chapter in instrumentation and industrial communication.

Power over Ethernet (PoE) offers several benefits for process engineers, as it omits the need for a separate DC power infrastructure, providing power and communications via the same cable. This brings new agility as flowmeters can be installed wherever needed. In addition, ABB 4-wire Ethernet combines classic outputs with future communication protocols. Offering a modular design allows the combination of both worlds and ensures that devices are futureproof, increasing the longevity of the flowmeters.

Furthermore, flowmeters with Ethernet connectivity increase simplicity, flexibility and reliability to operations in process automation, while enhancing real-time visibility of data. Previously hidden data in field devices, such as measurement values on density, conductivity or concentration of the medium, can be unlocked. This in turn will help customers across all industries identify redundant measurement points in their plants to achieve savings along the way.

“ProcessMaster and CoriolisMaster with Ethernet will support our customers’ digital journey towards smart cities and Industry 4.0. Ethernet is the leading communications technology. By incorporating it into the ABB flowmeters, we can help even more customers reduce complexity of operations and lower costs of infrastructure in more plants around the world – safely and remotely.” said Frank Frenzel, Global Product Line Manager Process Flowmeters. 

An integrated secure webserver based on the ABB Ability Cyber Security framework ensures robust and secure operations that offer instrumentation engineers support during commissioning and troubleshooting. It also provides access to configuration, diagnostics and measurement data through a built-in QR code. This allows verification of all parts of the flowmeter and provides insights into its operating condition with automatically generated reports. 

Combining 4-20 mA or digital outputs with new 1- or 2-port Ethernet makes classic instrumentation truly future-proof, with speeds of up to 100Mbit/s. The flowmeters use various Ethernet based communication protocols, such as simple Modbus TCP or high performance EtherNet/IP. This prepares them for IT/OT convergence, cloud connectivity and the requirements needed for secure and encrypted communication both today and tomorrow. 

*Ethernet connectivity for the electromagnetic flowmeter ProcessMaster is currently available in North America only. It will be released globally later in 2021.

Global EV battery production needs significant boost to meet demand

According to the ‘Electric Vehicle Battery Supply Chain Analysis,’ sponsored by ABB Robotics and authored by the automotive intelligence unit of Ultima Media, while 2036 is the changeover year when all-electric passenger vehicles are predicted to overtake sales of ICE-equipped equivalents, concerns over EV battery supply to meet the escalation in demand poses serious risk to the growth of electricity as a clean propulsion fuel, despite plans for 80 new global battery gigafactories.  

The report outlines that although Asia leads electric vehicle battery production, Europe will make up vital ground over the next few years while US manufacturers are also planning increases in capacity.  

“Automation is key to increasing assembly safety, quality and traceability and delivering battery technologies cost effectively, which is critical to the expansion of electric vehicles.” said Tanja Vainio, Managing Director of ABB Robotics Auto Tier 1 Business Line.  “With production speed and flexibility essential to the successful scale-up of the EV battery industry, our cellular production architecture enables manufacturers to quickly validate a cell design and then roll out production cells globally with uniform quality, safety and productivity standards. Roll-outs can be scaled to demand with the flexibility to adjust capacity in real time.”

The report’s researchers point to the importance of battery pack assembly being located close to or within car assembly facilities. 

“Co-locating battery pack assembly not only boosts sustainability by reducing transportation, it increases flexibility.  A cellular approach to production is easily integrated alongside existing lines. If the demand curve moves, cells can be added or removed quickly to maintain accurate production scale. Our robots are designed to be quickly repurposed as needed, boosting flexibility and adding to our sustainable approach by maximizing the life of each robot we build,” added Vainio. 

“We believe that building a robust battery supply chain will create a distinct competitive advantage for OEMs, setting a trend towards maximum production flexibility, whether battery pack production is insourced or outsourced, to further reduce costs and boost productivity,” Vainio added. 

The high price of EVs will increasingly create a barrier to further market penetration, reducing vehicle cost has therefore become a whole-industry focus. Given that the battery represents up to a third of vehicle costs, ABB is focused on solutions that improve battery manufacturing productivity. 

“Increasingly we see that higher productivity and lower costs are driven by assembling battery cells straight into packs,” concludes Vainio. “ABB is working in partnership with a number of manufacturers, using its systems and knowledge to increase productivity, quality and safety levels, as well as reduce finished pack costs through automated assembly – vital if EVs are to meet their required cost and adoption targets.”

The ‘Electric Vehicle Battery Supply Chain Analysis’ examines the current and future state of EV battery supplies – sources of materials, technologies available, demand analysis and potential risks. 

The report is available to download from here

Breakthrough Sensing Technology Boosts Both Medical and Manufacturing Applications

Just received this news from Nottingham University about a breakthrough sensing technology. Its immediate application is detecting at the cell level in a patient. However, there are potential applications for precision manufacturing. What do you think you could do with it?

Scientists at the University of Nottingham have developed an ultrasonic imaging system, which can be deployed on the tip of a hair-thin optical fibre, and will be insertable into the human body to visualise cell abnormalities in 3D. 

The new technology produces microscopic and nanoscopic resolution images that will one day help clinicians to examine cells inhabiting hard-to-reach parts of the body, such as the gastrointestinal tract, and offer more effective diagnoses for diseases ranging from gastric cancer to bacterial meningitis.

The high level of performance the technology delivers is currently only possible in state-of-the-art research labs with large, scientific instruments – whereas this compact system has the potential to bring it into clinical settings to improve patient care.

The Engineering and Physical Sciences Research Council (EPSRC)-funded innovation also reduces the need for conventional fluorescent labels – chemicals used to examine cell biology under a microscope – which can be harmful to human cells in large doses. 

The findings are being reported in a new paper, entitled ‘Phonon imaging in 3D with a fibre probe’ published in the Nature journal, Light: Science & Applications.

Paper author, Dr Salvatore La Cavera III, an EPSRC Doctoral Prize Fellow from the University of Nottingham Optics and Photonics Research Group, said of the ultrasonic imaging system: “We believe its ability to measure the stiffness of a specimen, its bio-compatibility, and its endoscopic-potential, all while accessing the nanoscale, are what set it apart. These features set the technology up for future measurements inside the body; towards the ultimate goal of minimally invasive point-of-care diagnostics.”

Currently at prototype stage, the non-invasive imaging tool, described by the researchers as a “phonon probe”, is capable of being inserted into a standard optical endoscope, which is a thin tube with a powerful light and camera at the end that is navigated into the body to find, analyse, and operate on cancerous lesions, among many other diseases. Combining optical and phonon technologies could be advantageous; speeding up the clinical workflow process and reducing the number of invasive test procedures for patients.   

3D mapping capabilities

Just as a physician might conduct a physical examination to feel for abnormal ‘stiffness’ in tissue under the skin that could indicate tumours, the phonon probe will take this ‘3D mapping’ concept to a cellular level. 

By scanning the ultrasonic probe in space, it can reproduce a three-dimensional map of stiffness and spatial features of microscopic structures at, and below, the surface of a specimen (e.g. tissue); it does this with the power to image small objects like a large-scale microscope, and the contrast to differentiate objects like an ultrasonic probe. 

“Techniques capable of measuring if a tumour cell is stiff have been realised with laboratory microscopes, but these powerful tools are cumbersome, immobile, and unadaptable to patient-facing clinical settings. Nanoscale ultrasonic technology in an endoscopic capacity is poised to make that leap,” adds Dr La Cavera. 

How it works

The new ultrasonic imaging system uses two lasers that emit short pulses of energy to stimulate and detect vibrations in a specimen. One of the laser pulses is absorbed by a layer of metal – a nano-transducer (which works by converting energy from one form to another) – fabricated on the tip of the fibre; a process which results in high-frequency phonons (sound particles) getting pumped into the specimen. Then a second laser pulse collides with the sound waves, a process known as Brillouin scattering. By detecting these “collided” laser pulses, the shape of the travelling sound wave can be recreated and displayed visually.

The detected sound wave encodes information about the stiffness of a material, and even its geometry. The Nottingham team was the first to demonstrate this dual-capability using pulsed lasers and optical fibres.

The power of an imaging device is typically measured by the smallest object that can be seen by the system, i.e. the resolution. In two dimensions the phonon probe can “resolve” objects on the order of 1 micrometre, similar to a microscope; but in the third dimension (height) it provides measurements on the scale of nanometres, which is unprecedented for a fibre-optic imaging system.

Future applications

In the paper, the researchers demonstrate that the technology is compatible with both a single optical fibre and the 10-20,000 fibres of an imaging bundle (1mm in diameter), as used in conventional endoscopes. 

Consequently, superior spatial resolution and wide fields of view could routinely be achieved by collecting stiffness and spatial information from multiple different points on a sample, without needing to move the device – bringing a new class of phonon endoscopes within reach.

Beyond clinical healthcare, fields such as precision manufacturing and metrology could use this high-resolution tool for surface inspections and material characterisation; a complementary or replacement measurement for existing scientific instruments. Burgeoning technologies such as 3D bio-printing and tissue engineering could also use the phonon probe as an inline inspection tool by integrating it directly to the outer diameter of the print-needle.Next, the team will be developing a series of biological cell and tissue imaging applications in collaboration with the Nottingham Digestive Diseases Centre and the Institute of Biophysics, Imaging and Optical Science at the University of Nottingham; with the aim to create a viable clinical tool in the coming years.

ABB Drops a Bunch of News, Drones, OEMs, and Mills

ABB has moved its media relations, at least the people working with me, to England. Two other major European industrial technology providers also have moved marketing and media relations from the US to England. I have no idea whether this is a statement about the state of the US market or the state of their cost structure. Maybe both.

ABB changed CEOs several years ago and just changed again. These precipitated changes in corporate emphases—divesting several large businesses and adding others. The variety in these three announcements certainly reflects the new diversity of the corporate portfolio.

ABB drone-based leak detection and greenhouse gas measuring system

HoverGuard can help operators of USA’s three million miles of pipeline infrastructure to increase their safety and environmental capabilities in line with the USA 2020 PIPES Act.

According to the US Energy Information Administration (EIA), the majority of gas shipments in the US take place using the millions of miles of the nation’s pipeline infrastructure. On December 27, 2020, the Protecting Our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act was signed into law in the United States. The Act directs gas pipeline operators to use advanced leak detection technologies to protect the environment and pipeline safety.

Detection of odorless and invisible gas leaks can be challenging and expensive. ABB’s latest addition to its ABB Ability Mobile Gas Leak Detection System, HoverGuard, provides the solution by finding leaks faster and more reliably than ever before. 

HoverGuard is an Unmanned Aerial Vehicle (UAV)-based system that detects, quantifies and maps leaks up to 300 ft from natural gas distribution and transmission pipelines, gathering lines, storage facilities, and other potential sources quickly, safely and reliably. It automatically generates comprehensive digital reports that summarize results and can be shared in minutes after a survey.

The cloud-connected, multi-gas solution is also the first of its kind to quantify the three most important greenhouse gases methane, carbon dioxide and water vapor continuously while flying. Each greenhouse gas affects the environment differently and is present in the air in different amounts. Sourcing individual gases also provides important information to scientists and researchers when studying the complex environmental processes affecting climate and pollution.

Patented cavity enhanced laser absorption spectroscopy detects methane with a sensitivity more than 1,000 times higher than conventional leak detection tools. This sensitivity and speed allow HoverGuard to detect leaks while flying at altitudes of 130 ft, or higher, and at speeds greater than 55 mph. It can cover 10-15 times more land area per minute by operating on low-cost commercial UAV capable of carrying a payload of 6.6 lbs.

ABB calls for more collaboration with OEMs

ABB has signed a Memorandum of Understanding (MoU) with Hitachi Construction Machinery to share their expertise and collaborate in bringing solutions to market that will reduce the greenhouse gas (GHG) emissions associated with heavy machinery in mining.  

The companies will explore possibilities to apply ABB’s electrification, automation, and digital solutions to mining trucks and excavators provided by Hitachi Construction Machinery as part of wider efforts with mine operators to electrify all processes from pit to port. Original equipment manufacturer (OEM) Hitachi Construction Machinery also brings expertise in driverless operation and labor-saving technologies. The aim of the combined solutions is to enhance the efficiency and flexibility of customer businesses, contributing to the reduction of CO₂ and the realization of a sustainable society.

The collaboration with Hitachi Construction Machinery is one of many that ABB are looking to develop with OEMs to accelerate the transition to all-electric mines.  

“ABB is calling for more collaboration between OEMs and technology companies to fast-track the development of new emissions-reducing systems with electrification and automation of the whole mining operation the goal. We are ready to work more with OEMs to establish a common approach for the market, and through strategic collaboration provide solutions that can help enable a low-carbon society and make mining operations more responsible,” said Joachim Braun, Division President, Process Industries, ABB. “New emissions-reducing technologies can transform the energy-intensive mining industry to achieve an even more productive, but also sustainable future.”

“Today, the challenge of our customers is on electrification of trucks and the time to change is now. But nobody can achieve this transformation alone. Co-creation of solutions with OEMs and mining companies is needed to successfully integrate electrification in mines.” said Max Luedtke, ABB’s Global Head of Mining.

ABB Ability Performance Optimization Service for cold rolling mills

ABB has launched its new ABB Ability Performance Optimization Service for cold rolling mills, offering steel, aluminum, and other metals manufacturers opportunities to reach new levels of operational performance through technology, boosting their processes and profitability.

The new service – part of ABB’s metals digital portfolio and Collaborative Operations for Metals suite – combines continuous performance monitoring using ABB Ability Data Analytics for cold rolling mills, with real time support from ABB experts. ABB will work alongside customers with the vision of continuing to transform the metals industry.

The data analytics component uses process-specific algorithms based on a century of metals domain expertise to collect high frequency data from mill control systems and discover trends, benchmarks and other performance factors, sending alerts to operators and maintenance when opportunities to optimize performance are identified.

Alongside this, ABB experts are available to provide onsite or offsite support, recommending actions to ensure the mill maintains its performance targets against key performance indicators (KPIs) for productivity, quality and yield. Leveraging the collective strengths of metals producers and ABB experts, access to dashboards is shared, enabling all parties to drill down to individual coil level.

In addition, ABB experts can provide customers with detailed reports at regular intervals describing areas for improvement, identified trends, or problem areas found in historical data, allowing for continuous improvement over time.

Key benefits include continuous collaboration and access to experts; increased productivity through improved asset performance and reduced downtime; higher yield and quality resulting from immediate corrective action when problems occur; reduced risk of equipment failure; the ability to leverage insights across the enterprise and reductions in wastage, energy and other costs.