Survey Sees 4th Industrial Revolution Moving From Buzz to Reality

Survey Sees 4th Industrial Revolution Moving From Buzz to Reality

The popular saying holds that the future is here just unevenly distributed. According to a survey released by PWC and The Manufacturing Institute, that thought is certainly true about the Fourth Industrial Revolution (which PwC labels 4IR but many others label Industry 4.0). This research confirms my observations that many manufacturers have projects at a variety of stages, while many others have adopted a wait-and-see attitude.

The report notes that fourth industrial revolution has been met with both enthusiasm and fence-sitting. While sentiments and experiences have been mixed, most business leaders are now approaching 4IR with a sense of measured optimism. Indeed, larger systemic changes are underway, including building pervasive digital operations that connect assets, developing connected products and managing new, real-time digital ties to customers via those products.

While manufacturers recognize the potential value of advanced technologies and digital innovation—particularly robotics, the Industrial Internet of Things (IIoT), cloud computing, advanced analytics, 3D printing, and virtual and augmented reality—they are still deliberating how and where to invest and balancing the hype with their own level of preparedness. Meanwhile, they’re also well aware of the significant changes 4IR will bring to a new manufacturing workforce—that is, one that is increasingly symbiotic and increasingly beneficial for many workers and manufacturers alike.

This narrative is reflected in a new survey of US-based manufacturers carried out by PwC and The Manufacturing Institute, the workforce and thought leadership arm of the National Association of Manufacturers. We see a definitive—and, indeed, inevitable—shift to 4IR as companies seek to integrate new technologies into their operations, supply chain, and product portfolio. At the same time, they acknowledge that scaling, justifying 4IR investments, and dealing with uncertainty surrounding use cases and applications usher in a new set of challenges.

Some key survey findings include:
• While the sector as a whole is making assertive forays into 4IR, many manufacturers still inhabit the awareness and pilot phases. Nearly half of manufacturers surveyed reported that they are in the early stages of a smart factory transition (awareness, experimental, and early adoption phases).
• Manufacturers do expect the transition to accelerate in the coming years—73% are planning to increase their investment in smart factory technology over the next year.
• While we see a number of fence-sitters, the bulk of manufacturers are indeed prioritizing 4IR, the digital ecosystem, and emerging technologies. 31% report that adopting an IoT strategy in their operations is “extremely critical” while 40% report that it’s “moderately critical.”
• About 70% of manufacturers say the biggest impacts of robotics on the workforce in the next five years will be an increased need for talent to manage in a more automated, flexible production environment and the opening of new jobs to engineer robotics and their operating systems.

…While adopters have identified clear signs of success. Though most manufacturers are still climbing the 4IR adoption curve—albeit at different speeds—those that have made progress are reporting a modicum of performance boosts measured by productivity gains, reduced labor costs, new revenue streams from IoT-connected products and services, as well as improved workforce retention and worker safety. Those that have effectively defined their use cases with a focus on outcomes rather than technology are seeing early wins, and are looking for ways to generate even more value.

The Takeaway
Manufacturers are seeking to balance 4IR hype and reality. And most acknowledge that sitting back and waiting for the inevitable may not be an option.

The road may be longer than the hype would have companies believe, but preparing for and embracing change is a muscle many of today’s manufacturers are ready to flex. Those that can build on their ad hoc pilots and prioritize investments and strategies with their long-term desired business outcomes will be better positioned to create lasting value for their organization.

Siemens and Chonicle Partner For Cyber Security

Siemens and Chonicle Partner For Cyber Security

Cyber Security got a shout-out during the Siemens Spotlight on Innovation forum in Orlando last week. Leo Simonovich, VP and Global Head, Industrial Cyber and Digital Security at Siemens Gas and Power, and Mike Wiacek, co-founder & CSO of Chronicle (an Alphabet company) took the stage discussing their newly signed cyber security agreement.

Key phrase—“customers can own their environment”. Perhaps the most interesting conversation I had during the networking event was with a Chronicle tech person who gave me a deep dive into the product. This is security unlike everything else I investigate in the OT realm. This isn’t a network monitoring app. Nor is it a device that acts as a firewall for industrial control devices. It builds a huge database and adds analytics (which is “in our DNA”). The solution has two parts—visibility and context. It bridges IT and OT worlds with the intent to “democratize security for the success of the digital economy”; that is, make it accessible to customers, simple, affordable, easy-to-use.

Through a unified approach that will leverage Chronicle’s Backstory platform and Siemens’ strength in industrial cyber security, the combined offering gives energy customers unparalleled visibility across information technology (IT) and operational technology (OT) to provide operational insights and confidentially act on threats.

The energy industry has historically been unable to centrally apply analytics to process data streams, cost-effectively store and secure data, and identify malicious threats within OT systems. Research conducted by Siemens and Ponemon Institute found that while 60 percent of energy companies want to leverage analytics, only 20 percent are utilizing any analytics to do security monitoring in the OT environment. Small and medium enterprises are particularly vulnerable to security breaches as they frequently do not have the internal expertise to manage and address increasingly sophisticated attacks.

“The innovative partnership between Siemens and Chronicle demonstrates a new frontier in applying the power of security analytics to critical infrastructure that is increasingly dependent on digital technology,” said Simonovich. “Cyber-attacks targeting energy companies have reached unprecedented speeds, and our cutting-edge managed service unlocks the analytics ecosystem offers a new level of protection from potential operational, business and safety losses.”

“Energy infrastructure is an obvious example of cyber-attacks affecting the physical world and directly impacting people’s lives,” said Ansh Patnaik, Chief Product Officer, Chronicle. “Backstory’s security telemetry processing capabilities, combined with Siemens’ deep expertise, gives customers new options for protecting their operations.”

The partnership between Siemens and Chronicle will help energy companies securely and cost-effectively leverage the cloud to store and categorize data, while applying analytics, artificial intelligence, and machine learning to OT systems that can identify patterns, anomalies, and cyber threats. Chronicle’s Backstory, a global security telemetry platform for investigation and threat hunting, will be the backbone of Siemens managed service for industrial cyber monitoring, including in both hybrid and cloud environments. This combined solution enables security across the industry’s operating environment – from energy exploration and extraction to power generation and delivery.

Government versus Business

Government versus Business

I saw this note in today’s Espresso from The Economist, “France’s finance minister pledged to save jobs under threat at General Electric’s plant in the country’s north-east. The American industrial conglomerate, which made a loss of $23bn last year, had said it would cut around 1,000 jobs. Earlier this year GE paid France a €50m ($56m) fine for failing to create jobs after it took over Alstom’s energy business.”

Meanwhile in the US, officials are taking a second look at the results of Foxconn’s supposed multi-billion dollar investments. Politicians made great PR hay in 2017 with the announcement of a large investment in Wisconsin. Two years down the road, maybe the investment may not be so large and the employment a few thousand shy.

Governments can preach and give breaks and whatever, but market forces and bad management mean much more than governments for success. Take Alstom, for example. Perhaps there is French pride involved, but GE discovered that that particular acquisition was not all that it hoped for. One of a string of GE missteps. The French government can fine all it wants, but job creation depends upon good management and proper economic tailwinds.

I recently reported on the “success” of re-shoring manufacturing jobs, as the Reshoring Initiative would have it. Most likely it’s a result of financial analysts taking a closer look at supposed savings from only low wages discovering that other costs, such as logistics, insurance, loss of intellectual property, longer lead times, inability to quickly respond to changing markets all combined to make manufacturing offshore unappealing.

Most of the ills of manufacturing society I read about have a common root cause—less than competent management. I don’t see any quick fixes for that! And it won’t come from government fines generated by disappointment at lack of political gain.

Survey Sees 4th Industrial Revolution Moving From Buzz to Reality

Innovation—A Word Often Loosely Used

People send about a dozen press releases per day to me, only slightly fewer on weekends. Many boast innovation in products, services, or pricing models. The word comes dangerously close to over use.

Siemens, however, consistently shows how users in a large variety of settings use the fruits of its own innovation of bringing together PLM, IT, automation, and industrial control for their own innovation.

My last post from the recent Siemens Innovation Forum discussed design and manufacture digitally using Siemens PLM and 3D printing. I also discussed a young woman using Siemens CAD and her own hard work to engineer a new prosthetic foot for a veteran of Afghanistan.

Next up at the Forum was Mayor Buddy Dyer of Orlando speaking on smart cities and the many places technology—principally from Siemens—were helping build infrastructure, water/wastewater controls, microgrids, and other elements of his administration’s smart cities work. Orlando has progressed far from its sleepy tourist-town roots.

Dr. Norbert Gaus, Head of R&D in Automation and Digitalization, AI at Siemens presided over an interlude with an example of robot picking utilizing AI + Digital Twin. Both are important components of an innovative manufacturing future.

The program jumped a level from travel by prosthetic foot to highways to aircraft carriers. Bharat Amin, VP & CIO of Newport News Shipbuilding discussed the entirely new way of building large ships using Siemens PLM, digital twin, digital thread, and electronic devices. This new workflow eliminated carrying huge piles of drawings to the site. The armloads of blueprints were replaced by a digital tablet.

People who have accomplished a digital turnaround always have timely advice for those of us beginning projects. Amin’s list: Start with people; Cultivate disruption; Nurture trust and relationships; Cut through bureaucracy; Go against the grain; Have an entrepreneurial spirit; Be willing to take risks.

Chester Kennedy, CEO Bridg—a microelectronics manufacturer, took Digital Twin from huge war ships to silicon wafers—microelectronics. He began with an MES to track through the entire process. The idea being that if they could find a flaw maybe at step 14 and scrap the part before investing more time and process only to find it at a later stage, they would save a ton of money. The digital twin idea is developing for work on security. At the beginning, Bridg just wanted an RFP for MES. Siemens came in and offered to go beyond Camstar (MES) to work in partnership to look at the system from design to physics and material science to workflow. The company needs security confidence by its customers, so it’s adding blockchain to help catch any potential sabotage within the microelectronics at manufacture.

Survey Sees 4th Industrial Revolution Moving From Buzz to Reality

Siemens Spotlight on Innovation

I flew to Orlando May 22 as a guest of Siemens along with a select few other “influencers” to be introduced to a number of innovation projects fueled by Siemens technology. We met at the Dr. Phillips Center for Performing Arts in downtown Orlando (did you even know there was a downtown?), which itself is filled with Siemens equipment. There are few companies in the industrial area which I cover that have the vision and execution that Siemens is exhibiting right now.

By the way, there is a fantastic little taco place in downtown Orlando. Email or DM on Twitter, and I’ll share the name. Greg Hale of ISSSource.com and I had dinner there Wednesday. We agreed—among the best tacos we’ve had.

Barbara Humpton, CEO Siemens USA, led with an overview. Siemens has made a greater than $1B investment in R&D in the US with 7,000 engineers churning out 700 inventions per year.

She introduced former stunt man and motorcycle racer turned CEO Mike “Mouse” McCoy, CEO & Founder of HackRod. McCoy built on a foundation of Siemens PLM and SolidEdge CAD. He added a gaming engine. He was able to use VR for design reviews, interference checking, and simulation during the design process. We followed along with design and review of a new motorcycle. A few parts required somewhat exotic materials. Oak Ridge National Labs printed the parts from the design files downloaded from HackRod. The design teams were in Ventura, CA and Princeton, NJ with input from Munich, Germany. Collaboration was not a problem.

Beginning of design until component parts shipped to Orlando—2 weeks. The parts arrived Tuesday. McCoy and a partner assembled the motorcycle on Tuesday evening and wheeled (not drove) it onto the stage Wednesday about 1:30. Not bad? Heck, in my early career, we couldn’t have done a foam-core mock up in that time frame.

One thought McCoy left us with. “We need to talk STEAM, not just STEM—science, technology, engineering, arts, math.” It is now possible for artists and designers to be an intimate part of the team going from art to finished product quickly. 3D printing from PLM files. Way cool.

How about a high school mechanical design student given a project to provide a lighter prosthetic foot for an Army vet? Humpton introduced 18-year-old high school student Ashley Kimbel who had undertaken just such a project. She worked with the veteran to analyze his current “foot” looking for areas where weight could be eliminated. Then she had to learn how to fabricate and manufacture the device. We saw films of the veteran running with Ashley proving out the new prosthetic.

This is a long way from projects I had as a 17-year-old senior. Education and technology have come a long way in a lifetime. Oh, and her future? She wants to work in bioengineering designing and 3D printing organs. She will be working on that during her tenure at UAB. She is going to make a difference for many people.

I have many more ideas and conversations to capture. This will serve for now.
Check out #SiemensInnovates

Follow this blog

Get a weekly email of all new posts.