Three recent items from Emerson just came my way. The essay on Emerson Process Experts about decoupling software, hardware, I/O in control systems piqued my interest as Emerson’s “response” to the Open Process Automation Forum’s work. I place response in quotation marks because I’m not sure when they really started development. I know that Honeywell, for example, began its development work even before OPAF.
Emerson also is playing at the Edge, while valves continue to be an important part of the product portfolio noted by the release of a valve-related product.
It’s Time to Break Up—Automation’s Future will be Defined by Decoupling by Todd Walden, Claudio Fayad
As Claudio Fayad explains in his recent article in Processing magazine, there are many exciting changes coming as Emerson embarks on its Boundless Automation journey and evolves the modern control system in to a next-generation automation platform. However, what might come as a surprise is that many of the coming evolutions will look familiar, as quite a bit of the important work is based in a decoupling journey—one that actually started a long time ago.
People who have been in the automation industry a long time likely still remember the days when I/O required termination on marshalling cabinets and I/O cards attached to the controller. The complicated interface meant project engineering was extremely complex—wiring diagrams needed to be created in advance of every project and though they could be changed later in the project, those changes could quickly become very costly.
To meet this need, Emerson designed an Electronic Marshalling solution. Electronic Marshalling decoupled I/O from the controller, empowering teams to define I/O on an as-needed basis and gave them the option to stay flexible even in the late stages of a project. And while that critical transformation took place decades ago, the decoupling of I/O from the control system is still relevant in one of the newest technologies that will form the foundation of the Boundless Automation journey: advanced physical layer (APL). APL brings the power and flexibility of Ethernet into the plant using the two-wire cabling that plants already have in place. As Claudio explains, using APL to further decouple I/O from the control system will bring big benefits,
Emerson’s New Edge Solution Democratizes Operational Data
Emerson has launched the DeltaV Edge Environment that expands the capabilities of the evolving DeltaV automation platform to provide an operational technology (OT) sandbox for data manipulation, analysis, organization and more. Teams can deploy and execute applications to run key artificial intelligence (AI) engines and analytics close to the data source with seamless, secure connectivity to contextualized OT data across the cloud and enterprise. The DeltaV Edge Environment empowers teams to more quickly deliver operational improvements tied to productivity, sustainability and other business objectives.
A single, encrypted, outbound-only flow of data helps authorized users ensure they have constant access to near real-time data without risk of users accessing the control system—a common risk with traditional custom-engineered solutions. Users can run applications for visualization, analytics, alarm management, digital twin simulations and other needs with the contextualized data available on the DeltaV Edge Environment. OT teams will know the rich data they use is a precise replica, always up to date and fully reflective of the current operating condition.
The DeltaV Edge Environment leverages open, common protocols such as OPC Unified Architecture (OPC UA) to provide contextualized data while standard application programming interfaces like representational state transfer architectural style (REST API) and scripting tools like Python provide the sandbox environment in which users can design and run applications.
Learn more on the DeltaV Edge Environment webpage.
New Valve Health App Provides Timely Plantwide Health Indicators
Emerson has announced the Plantweb Insight Valve Health Application, a powerful software tool that combines Fisher control valve expertise with advanced analytic algorithms. The new app makes it possible for users to visualize an entire connected fleet of valves, while prioritizing actions based on the health index of each valve. This helps plant personnel optimize valve repair activities, resulting in faster and better maintenance decisions, leading to reduced downtime.
The app allows users to prioritize repair and maintenance activities with five different indicators—Repair Urgency Status, Valve Health Index, Financial Impact, Criticality, and NE107 Alert Status—to meet specific needs. The app includes explanations, recommendations, and suggested time to take action. This last indicator is totally new to the market and is one of the app’s exclusive features.