IMTS 2018 Features Variety of Manufacturing Technologies

IMTS 2018 Features Variety of Manufacturing Technologies

IMTS has been a huge show for many years. As you might expect from a trade show, the theme is broad. Exhibitors are a diverse lot. Things I saw indicating a new wave of technologies including machines designed to work with humans (so-called “cobots”) and various aspects of Industrial Internet of Things. Following are a few specifics.

Formerly the International Machine Tool Show and now the International Manufacturing Technology Show, the South Hall of Chicago’s McCormick Place is still filled with huge machining centers. The North Hall was packed with robotics, components, and other automation products. Much of this flows over to the East Hall where several aisles were devoted to Hannover Messe automation companies—my sweet spot. Even the West Hall was packed.

Beckhoff proclaimed, “Solve the IoT hardware, software and networking puzzle.”

The company introduced ultra-compact Industrial PCs (IPCs). These IPCs are Microsoft Azure Certified and can work just as easily with other major cloud platforms such as Amazon Web Services (AWS) and SAP HANA.

Significant updates will span three key areas of the TwinCAT software suite: new HTML5-enabled TwinCAT HMI for industrial displays and mobile devices, important data processing expansions in the TwinCAT Analytics offering, and TwinCAT 3 Motion Designer, which adds a deep set of valuable tools to commission entire motor, drive and mechanical systems in software. Motion Designer can be integrated into the standard TwinCAT 3 software platform or it can be used as a stand-alone motion system engineering tool.

EK1000 EtherCAT TSN Coupler expands the industrial Ethernet capabilities of the EtherCAT I/O system to utilize TSN (Time-Sensitive Networking) technology. The EK1000 enables communication among high-performance EtherCAT segments with remote EtherCAT controllers via heterogeneous Ethernet networks.

Ideagen plc, the UK-based software firm, announced the acquisition of American quality inspection software provider, InspectionXpert. Based in Raleigh, North Carolina, InspectionXpert currently generates $2.8 million in revenue and will bring more than 1,000 clients including Boeing, Kohler and Pratt & Whitney to Ideagen’s existing customer base.

Speaking at IMTS, Chicago, Ideagen CEO, Ben Dorks, said: “As well as significantly enhancing our manufacturing supply chain product suite, the acquisition of InspectionXpert provides Ideagen with a fantastic opportunity for growth by broadening upsell and cross-selling opportunities, increasing our customer footprint and expanding our geographical reach.”

InspectionXpert’s products, InspectionXpert and QualityXpert, enable organizations in the precision manufacturing industry and associated supply chains to simplify inspection planning, execution and reporting and general quality through digitalization of paper-based processes.

InspectionXpert and QualityXpert will be integrated into Ideagen’s existing software suite, which will enhance Software as a Service (SaaS) revenues and provide excellent opportunities for future growth.

Energid released Actin 5, an update to its robot software development kit (SDK). Called the industry’s only real-time adaptive motion control software, it allows robotic system developers to focus on the robot’s task rather than joint movement and paths. It responds in real time to sensory input and directs the robot on the most efficient path while avoiding collisions. The robot motion is updated dynamically without requiring reprogramming, even in dynamic, mission-critical environments.

Forcam develops software solutions in the area of MES, IIoT, and OEE. It leans into the trend of developing platforms. Its platform is built with open APIs with the latest programming languages and tools. It supports Microsoft Azure Cloud, SAP ERP, Maximo maintenance/asset applications, and Apple iPads for input. The platform helps reduce integration time and expense.

I came across the Dell Technologies booth in the automation hall. The big news was a collaboration with Tridium and Intel for IIoT solutions.

The IIoT solution is built on the Niagara Framework, Tridium’s open technology platform, and combines software and consulting services to help customers begin the digital transformation of their businesses.

The Niagara-based IIoT solution built with Dell and Intel technology will comprise a complete hardware and software stack delivered as a finished solution for ease of adoption, and will encompass consulting services from subject matter experts to support implementation. The application layer of the IIoT solution is being developed and supported by Tridium and will expand over time with solutions designed for the telecom and energy sectors.

Defining Your IoT Terms Such As Edge and IT/OT Convergence

Defining Your IoT Terms Such As Edge and IT/OT Convergence

Defining terms enhances effectiveness of communication—especially in this new Industrial Internet of Things (IoT) space. The Industrial Internet Consortium (IIC) leads the way bringing companies and people together to accomplish this sort of work.

I floated a definition of edge a little while ago and got an interesting reaction on Twitter. Let’s see how this one flies.

IIC announced V2.1 of the Industrial Internet Vocabulary Technical Report. Designed to reduce confusion in the marketplace, the report is a foundational document that provides a common set of definitions for IIoT terms used in all IIC documents. It is also intended as a reference for anyone working in IIoT, including those in IT, OT and vertical industries.

The report adds definitions for terms used in data management, edge and edge computing, IT/OT convergence, connectivity, interoperability, brownfield and greenfield.

“People from different backgrounds and different vertical industries will often use different terms to mean the same thing. Additionally, the industrial internet has core concepts that mean different things to different people,” said Anish Karmarkar, Co-Chair of the Vocabulary Task Group, and Senior Director, Standards Strategy & Architecture at Oracle. “Without an agreed upon vocabulary, there’s a lot of room for misunderstandings. For example, we’ve defined IT/OT convergence as a process of interweaving IT and OT in order to create IIoT systems. While IT/OT convergence is a hot topic today, not everyone is on the same page as to what it exactly means.”

The report provides definitions for data management, including data, data at rest, data in motion, data in use, data integrity and many others to make communication on this subject easier for IIoT stakeholders. The report also clears up confusion on “connectivity” and “interoperability,” which IIoT stakeholders often mix up. “Connectivity” means the ability of a system or app to communicate with other systems or apps via networks. “Interoperability” means the ability of two or more systems or apps to exchange and use that information.

“Edge and edge computing are hotly debated topics in IIoT this year,” said Marcellus Buchheit, one of the primary authors of the IIC IIoT Vocabulary Technical Report, and President & CEO, WIBU-SYSTEMS USA Inc. and Co-Founder, WIBU-SYSTEMS AG. “IIoT stakeholders in every industry have been asking ‘where is the edge,’ or ‘what is edge computing.’ The report defines the ‘edge’ as the boundary between pertinent digital and physical entities, delineated by IoT devices, and ‘edge computing’ as distributed computing that is performed near the edge, where the nearness is determined by the system requirements. At the moment, the IIC is the only consortia to provide definitions for ‘edge’ and ‘edge computing.’”

Read the IIC Journal of Innovation September 2017: Edge Computing to learn even more about edge computing. JOI articles show that by moving compute closer to data sources, edge computing allows for faster sense-analyze-response cycles, which is important for running mission-critical, real-time IIoT applications such as equipment monitoring or autonomous machinery.

Eight Transformative Technologies

Eight Transformative Technologies

Everybody has a list of transformative technologies. A news release from an advisory firm, ABI Research, came my way a few weeks ago. Its analysts came together and compiled a list of eight technologies they feel will be transformative in manufacturing and then they fit them with Smart Manufacturing. That latter phrase is one of the descriptors for the new wave of manufacturing strategy and technology.

We will have difficulty contesting the list. Most of these are, indeed, already well along the adoption path. I find it interesting that they refer to IIoT platforms, but they don’t view those as transforming technologies but rather as a sort of sandbox for the technologies to play in.

[This is a Gary aside—when an analyst firm makes a list of suppliers, I’d advise not considering it to be comprehensive. Rather the list is usually comprised of companies that the firm’s analysts get to sit down with and receive in-depth briefings.]

The ABI report identifies eight transformative technologies:

1 Additive manufacturing

2 Artificial intelligence (AI) and machine learning (ML)

3 Augmented reality (AR)

4 Blockchain

5 Digital twins

6 Edge intelligence

7 Industrial Internet of Things (IIoT) platforms

8 Robotics

From the ABI news release, “The manufacturing sector has already seen increased adoption of IIoT platforms and edge intelligence. Over the next ten years, manufacturers will start to piece together the other new technologies that will eventually lead to more dynamic factories less dependent on fixed assembly lines and immobile assets. Each step in this transformation will make plants and their workers more productive.”

“Manufacturers want technologies they can implement now without disrupting their operations,” says Pierce Owen, Principal Analyst at ABI Research. “They will change the way their employees perform jobs with technology if it will make them more productive, but they have no desire to rip out their entire infrastructure to try something new. This means technologies that can leverage existing equipment and infrastructure, such as edge intelligence, have the most immediate opportunity.”

ABI summary of its research

The transition towards a lights-out factory has started, but such a major disruption will require an overhaul of workforces, IT architecture, physical facilities and equipment and full integration of dozens of new technologies including connectivity, additive manufacturing, drones, mobile collaborative robotics, IIoT platforms and AI.

IIoT platforms must support many of these other technologies to better integrate them with the enterprise and each other. Those that can connect and support equipment from multiple manufacturers, such as PTC Thingworx and Telit deviceWISE, will last.

After decades of producing little more than prototypes, the AM winter has ended and new growth has sprung up. GE placed significant bets on AM by acquiring Arcam and Concept laser in 2016, and Siemens announced an AM platform in April 2018. Other leading AM specialists include EOS, Stratasys, HP and 3D Systems.

ML capabilities and simulation software have made digital twins extremely useful for product development, production planning, product-aaS, asset monitoring and performance optimization. Companies with assets that they cannot easily inspect regularly will significantly benefit from exact, 3D digital twins, and companies that manufacture high-value assets should offer digital twin monitoring as-a-service for new revenue streams. Innovative vendors in digital twins and simulation software include PTC, SAP, Siemens, and ANSYS.

The above technologies have already started to converge, and robotics provide a physical representation of this convergence. Robotics use AI and computer vision and connect to IIoT platforms where they have digital twins. This connectivity and AI will increase in importance as more cobots join the assembly line and work alongside humans. The robotics vendors that can integrate the most deeply with other transformative technologies have the biggest opportunity. Such vendors include the likes of ABB, KUKA, FANUC, Universal Robots, Rethink Robotics and Yaskawa.

“The vendors that open up their technologies and integrate with both existing equipment and infrastructure and other new transformative technologies will carve out a share of this growing opportunity. Implementation will go step-by-step over multiple decades, but ultimately, how we produce goods will change drastically from what we see today,” concludes Owen.

Intelligent Sensor Grid Powering Digitized Commerce at the Edge

Intelligent Sensor Grid Powering Digitized Commerce at the Edge

Successful digitalization requires data. Data, in turn, originates often from sensors. The Industrial Internet of Things runs on this data providing a valuable use case of tying a manufacturing enterprise together from supply chain through customer experience.

Mahesh Veerina, CEO of Cloudleaf, walked me through an application based on his company’s technology that indeed ties a supply chain in the pharma industry together. Start with sensors on approximately 5,000 pallets. Each meshes via sub-MHz unlicensed radios through 30 intelligent gateways reporting 16 million data points. Cloudleaf’s SaaS software gathers the data, performs the analytics, then feeds custom dashboards for different roles at the customer’s company. Oh, and continuous learning through Artificial Intelligence (AI) creates a virtuous cycle that constantly improves the system.

The return on investment (ROI)? Estimated at between $70 million and $100 million.

Cloudleaf has announced the next generation of its patented Sensor Fabric, the IoT-at-scale solution that optimizes management of distributed assets throughout any enterprise value chain.

Cloudleaf’s next-generation Sensor Fabric maintains an intelligent grid at the edge for global commerce, making digitization a reality for enterprise customers and value chain partners. Its easy-to-deploy intelligent sensors, gateways and cloud technologies minimize costs and maximize quality, efficiency and reporting standards. At the same time, Cloudleaf’s patented solution generates a continuous stream of increasingly predictive data that enables an enterprise to monitor, measure and manage distributed assets –– on the ground and on the fly. Key enhancements include:

• Comparative multi-location movement history maximizes yield and improves asset utilization.

• Lifecycle tracking optimizes business processes, managing dwell times, cycle times, asset condition changes and other variables.

• Value Loss analytics measure inefficiencies in asset handling, storage and usage.

• Path Modeling provides compliance tracking, monitoring and reporting.

• Next-gen control center enables on-the-fly deployment, calibration, and management of Sensor Fabric, with easy to use web and mobile dashboards.

Unlike products that occasionally add new features and functionalities, Sensor Fabric essentially upgrades itself. Tens-of-millions-per-day messaging sparks multiplier machine learning. The result is agile and actionable insights in virtually any industrial process. The longer Sensor Fabric is deployed, the smarter the industrial process is.

“We are extremely gratified by the extraordinary market acceptance that Cloudleaf is achieving,” said Veerina. “More and more extended enterprises in a wide range of industries are asking Cloudleaf to help them achieve the kinds of efficiencies and ROI that our current customers are gaining. In the very near future, we expect to begin announcing the addition of a number of industry leaders –– including internationally known household names – to our rapidly growing customer base.”

Pondering Automation Company Strategies

Pondering Automation Company Strategies

Rockwell Automation’s recent huge investment in PTC for only 8% of the company has sparked a number of thoughts on strategies not only of Rockwell Automation, but also other companies in the market. We’re looking not only at Rockwell Automation in this brief analysis, but also Siemens, Schneider Electric, and ABB.

I’ve left out Emerson, Honeywell, and Yokogawa. The only interesting thing in that part of the market is Emerson’s abortive run at acquiring Rockwell. That was strange. I don’t think that Emerson could have digested such a meal.

The analysis is not to knock anyone but to look for trends and strategies of some of our major suppliers.

I think it begins with Siemens. An executive explained the company’s digital factory strategy and vision many years ago. Then the company acquired UGS and added PLM, CAD, and other digital technologies. There followed other similar acquisitions. I’m thinking mainly of the COMOS product, here.

If you are looking for an articulation of the strategy, I suggest looking no further than Industrie 4.0 and cyber-physical systems.

Sticking with Europe and the competition over there, let’s consider Schneider Electric. This company has been building the “electrification” side of the business which also brought industrial control products and some automation–think Modicon. While it lost considerable market share in PLCs, it did remain in the market. Then it acquired Invensys adding a lot of software (something it never really was good at) but especially process control (Foxboro, etc.). This latter helps it in the power market segment and positions it well against ABB. Siemens of course is the main competitive target. Then is a strange move, Schneider used its software businesses (Wonderware, etc.) as an investment in AVEVA grabbing 51% of the company. Now it, too, has a digital factory strategy in place.

ABB, a strong competitor in the power side of the business and also in process control, acquired B+R Automation. That company was a strong second-tier machine automation supplier fleshing out ABB’s portfolio in the discrete, or machine, automation market. Then it acquired GE’s industrial business strengthening ABB in the “electrification” market. Sounding familiar.

Now look at Rockwell’s investment. That company has flirted with Dassault Systemes over many years for a PLM-to-Control strategy. But nothing ever came of it.

A couple of years ago it acquired thin-client manufacturer ACP and systems integrator Maverick Technologies and MagneMotion a supplier of motion control and conveyor technologies. Then came a large investment in PTC for a small percentage of the company. I speculated that this could be a Digital Factory play along with the respected analyst Joe Barkai, but my friend Keith Larson writing for Putman Publishing (and someone I trust to accurately report on what suppliers are saying) reported that the sought-after prize was a closer integration with ThingWorx. This would be a piece of the Rockwell strategy of “Connected Enterprise” and Larson reported that the target RA product is its MES offering.

In other words, Rockwell Automation seems focused not on the current buzz of Industry 4.0/Industrial Internet of Things/Cyberphysical systems/Digital Factory, but on “making our customers more productive.” Its roots are plant floor and it remains a plant floor supplier.

I am NOT predicting any acquisition of Rockwell Automation, but I do believe that the market needs some continued consolidation. The next five years will be interesting in this market.

Follow

Follow this blog

Get every new post delivered right to your inbox.