Integrated Service Delivery Model Assess, Manage and Optimize Automation Assets

Continuing coverage of this week’s Honeywell Process Virtual Technical Experience.

[Note: You can have these posts sent to you via email simply by signing up at the appropriate link. There is normally one post per day, however covering two conferences and a couple of press conferences this week necessitates a little extra coverage.]

Continuing the theme of “remote” and also support and services, Honeywell Process Solutions announced this week Enabled Services program powered by Honeywell Forge. This automation lifecycle services offering focuses on ensuring Industrial Control System (ICS) health, reliability and compliance.

In brief:

  • End-to-end solution enables remote preventive maintenance and support
  • Plant operators can reduce number of incidents per year by 40% and improve total cost of ownership

“Honeywell developed the Enabled Services program as a subscription-based service for ICS users dealing with increasing system complexity, an aging industrial workforce and the constraints imposed on plant operations by global health concerns,” said Mark Dean, director of offering management, Honeywell Process Solutions. “Through this Enabled Services offering, Honeywell’s experts can conduct rapid analysis and make fast recommendations to solve the issues and be onsite only when necessary. Honeywell has created a powerful tool for customers to significantly improve maintenance efficiency and redirect expensive resources to high priority corrective maintenance.”

Honeywell estimates it’s Enabled Services solution can deliver increased value by reducing the number of incidents per year by 40%, with a net decrease in total cost of ownership of 15%. These capabilities not only help improve system health, performance and compliance, but also allow customers to redirect existing high skill resources to use more time to work on systems improvements and to focus on their core business.

Based on Honeywell’s step-change Lifecycle Solutions & Services delivery model, which responds to customer-driven feedback from around the world, the Enabled Services solution is designed around three key pillars:

  • System health and performance – in other words, what is going wrong in the plant
  • System compliance — why it is going wrong
  • Prescriptive maintenance and remediation – how the issues can be resolved.

Honeywell’s program uses intuitive and consistent dashboards powered by Honeywell Forge technology, which provides users with real-time intelligence to enable peak performance. It also employs remote connection and/or local data collection, predictive and diagnostic tools, and global resource centers – all to support improved operational and business performance.

Enabled Services remote support capabilities were specifically developed with security in mind. The services employ protected network connections built on industry recognized standards, such as IEC 62443, to transfer data from the customer’s site to Honeywell’s global resource centers.

Through its proactive approach, Enabled Services offer improved efficiencies compared with ad hoc maintenance regimens, homegrown solutions that compromise migration readiness, and/or delaying service and repairs until assets fail. This comprehensive solution can help company executives, plant managers and control engineers to:

  • Understand and improve operational effectiveness and risk profiles
  • Leverage operational benefits from systems, applications and people
  • Focus efforts on core competencies by deploying suitably skilled resources
  • Improve the health, security and stability of control assets

Honeywell’s Enabled Services offering includes two levels of support to meet diverse customer requirements. Enabled Services Enhanced employs fully connected systems and offers continuous insights on system health, performance and compliance with actionable recommendations. Enabled Services Essential is intended for a non-connected system and offers less frequent updates.

Laser Micromachining Manufacturing Unveiled

As you add electronic sensing and control and networking to machinery, you can take a process to the next level. I’ve been impressed with the growing development of tighter tolerances and then better variety of materials for 3D printing (additive manufacturing). Here is an example of expanding the use of automated “subtractive” manufacturing—micro machining.

6-D Laser LLC was formed in 2018 as an affiliate of leading nanometer-level motion control specialist ALIO Industries, with the mission of integrating ultrafast laser processing with precision multi-axis motion systems. 6-D Laser offers Hybrid Hexapod-based laser micromachining systems for wide-range taper angle control, 5-Axis Laser Gimbal-based systems for laser processing 3D substrates, and unlimited field of view scanning solutions for laser processing large-format substrates.

Coming out of stealth mode and coinciding with its official launch in 2020, 6-D Laser has launched its website (www.6dlaser.com), and has also announced that the company will be showcasing its radical new approach to laser micro processing at the SPIE Photonics West event, booth 2149, 4-6 February in San Francisco, CA.

6D Laser’s central mission addresses limitations of existing laser processing systems which are largely due to sub-optimal positioning systems used by most system integrators. 6-D Laser tackles this problem by integrating ultra-fast laser material processing with the 6-D nanometer-level precision motion control solutions in which ALIO Industries specializes.

At the heart of 6-D Laser’s integrated ultrafast laser micromachining system is ALIO Industries’ Hybrid Hexapod, which takes a different approach to traditional 6 Degree of Freedom (6-DOF) positioning devices, and exhibits much higher performance at extremely competitive prices. Rather than 6 independent legs (and 12 connection joints) ALIO’s approach combines a precision XY monolithic stage, tripod, and continuous rotation theta-Z axis to provide superior overall performance.

The combination of serial and parallel kinematics at the heart of ALIO’s 6-D Nano Precision® is characterized by orders-of-magnitude improvements (when compared to traditional hexapods) in precision, path performance, speed, and stiffness. The Hybrid Hexapod® also has a larger work envelope than traditional hexapods with virtually unlimited XY travel and fully programmable tool center point locations. The Hybrid Hexapod® has less than 100 nm Point Precision® repeatability, in 3-dimensional space.

​6D Laser vertically integrates all of the sub-systems required for precision laser micro-processing, and it does this by forming strategic partnerships with key component and subsystem suppliers that are required to achieve the goals of demanding precision applications. In addition to its association with ALIO, 6-D Laser has also partnered with SCANLAB GmbH, which together with ACS Motion Control, has developed an unlimited field-of-view (UFOV) scanning solution for coordinate motion control of the galvo scanner and positioning stages called XLSCAN. 6-D Laser has also partnered with NextScanTechnology to provide high-throughput scanning systems that take advantage of the high rep-rates in currently available in ultrafast lasers, and Amplitude Laser, a key supplier of ultrafast laser systems for industrial applications.

Dr. Stephen R. Uhlhorn, CTO at 6-D Laser says, “Introducing an integrated ultrafast laser micromachining system that combines the positioning capabilities of the Hybrid Hexapod®, with high-speed optical scanning leads to a system that can process hard, transparent materials with wide-range taper angle control for the creation of high aspect ratio features in thick substrates, without limitations on the feature or field size.”

Ultrafast laser ablative processes, which remove material in a layer-by-layer process, result in machined features that have a significant side wall taper. For example, a desired cylindrical hole will have a conical profile. Taper formation is difficult to avoid in laser micromachining processes that are creating deep features (> 100 microns). Precision scanheads can create features with near-zero angle side walls, but they are limited to small angles of incidence (AOI) and small field sizes by the optics in the beamline.

Uhlhorn continues, “6-D Laser’s micromachining system controls the AOI and resulting wall taper angle through the Hybrid Hexapod® motion system, and the programmable tool center point allows for the control of the AOI over the entire galvo scan field, enabling the processing of large features.”

About 6-D Laser LLC
6D Laser, LLC, an affiliate of ALIO Industries, Inc, was founded in 2018 by C. William Hennessey and Dr. Stephen R. Uhlhorn. ALIO Industries is an industry-leading motion system supplier, specializing in nano-precision multi-axis solutions. 6D Laser was formed with the mission of integrating ultrafast laser processing with precision multi-axis motion systems, including ALIO’s Patented Hybrid Hexapod. The integration of ALIO True Nano motion systems with key sub-system suppliers, through strategic partnerships with Amplitude Laser, SCANLAB, and ACS Motion Control, enables a new level of precision and capability for advanced manufacturing.

www.6DLaser.com ​​​​​
www.microprm.com

20 Metatrends To Blow Your Minds

20 Metatrends To Blow Your Minds

20 METATRENDS FOR THE ROARING 20S

Everybody it seems likes metatrends, megatrends, any-kind-of-trends, especially at the beginning of a calendar year. I think that many of these are good idea stretchers. Whether or not they serve as accurate predictors does not matter. People are working on many projects and ideas that will yield something in the future.

Peter Diamandis publishes an Abundance newsletter, preaches Abundance thinking, did the X-prize, and many more futuristic stretch-the-mind ideas.

I lifted the following introduction to his latest newsletter “20 Metatrends For the Roaring 20s.” I recommend visiting the website and thinking through these ideas. He is an abundant optimist about technology. I’m afraid that I’ve been around too many MBAs and marketers. So his idea that someday the Alexa’s and Siri’s of the world will be our loyal servants freeing us from advertising influence pushes aside the factor that these technologies are being developed by companies who survive on advertising. It will be interesting to see how this one plays out.

In the decade ahead, waves of exponential technological advancements are stacking atop one another, eclipsing decades of breakthroughs in scale and impact.

Emerging from these waves are 20 “Metatrends,” likely to revolutionize entire industries (old and new), redefine tomorrow’s generation of businesses and contemporary challenges, and transform our livelihoods from the bottom-up.
Among these metatrends are augmented human longevity, the surging smart economy, AI-human collaboration, urbanized cellular agriculture, and high-bandwidth brain-computer interfaces, just to name a few.

It is here that master entrepreneurs and their teams must see beyond the immediate implications of a given technology, capturing second-order, Google-sized business opportunities on the horizon.

Welcome to a new decade of runaway technological booms, historic watershed moments, and extraordinary abundance.

20 Metatrends To Blow Your Minds

Is the IoT In Danger of Splintering?

I picked this news item up from The Economist Espresso app.

For years, technologists have gushed about the promise of the “Internet of Things”, enabling ordinary objects—from kettles to cargo ships—to communicate autonomously with each other. The two essential technologies speeding the IOT’s arrival, inexpensive sensors and super-fast networking kit, are advancing rapidly. Gartner, a research group, predicts that the global number of devices embedded with sensors will leap from 8.4bn in 2017 to 20.4bn in 2020. So is 5G, a telecoms-networking technology superior to today’s 4G mobile networks. But the world’s 5G system could split into two different and potentially incompatible entities. One has been developed by Huawei, a Chinese telecoms-equipment giant, at a cost of $46bn. But some are worried about the company’s links to the Chinese Communist Party. Several countries, led by America, have banned the use of Huawei’s gear in their systems for security reasons. The year 2020 could herald the arrival of the Splinternet of Things.

I daresay that most likely many countries in the world are concerned about the ability of the US government to monitor internet traffic through the technology of American companies. These swords always cut two ways when you take the larger view.

More relevant to this topic, though, could a potential splintering into two 5G systems globally impact IoT?

In the short term from what I can gather interviewing technologists, benefits from 5G will accrue from the ability for private, plant-wide broadband rather than from some global linking of sensors.

Perhaps we are a bit early for journalists’ raising fear, uncertainty, and doubt. Listening to people actually building out the technology, I think we are going to experience much benefit from 5G in the not-to-distant future.

IoT and Control Systems Soft Targets for Cyber Hackers

IoT and Control Systems Soft Targets for Cyber Hackers

Internet of Things installations along with industrial control systems constitute well known cybersecurity vulnerabilities within industrial plants and operations. CyberX, the IoT and industrial control system (ICS) security company, announced the availability of its “2020 Global IoT/ICS Risk Report” designed to sharpen awareness and knowledge of this critical area.

The data illustrates that IoT/ICS networks and unmanaged devices are soft targets for adversaries, increasing the risk of costly downtime, catastrophic safety and environmental incidents, and theft of sensitive intellectual property.

Some of the top findings noted that these networks have outdated operating systems (71 percent of sites), use unencrypted passwords (64 percent) and lack automatic antivirus updates (66 percent).

Energy utilities and oil and gas firms, which are generally subject to stricter regulations, fared better than other sectors such as manufacturing, chemicals, pharmaceuticals, mining, transportation and building management systems (CCTV, HVAC, etc.).

Now in its third year, CyberX’s “Global IoT/ICS Risk Report” is based on analyzing real-world traffic from more than 1,800 production IoT/ICS networks across a range of sectors worldwide, making it a more accurate snapshot of the current state of IoT/ICS security than survey-based studies.

Including the data presented in previous reports, CyberX has now analyzed over 3,000 IoT/ICS networks worldwide using its patented M2M-aware behavioral analytics and non-invasive agentless monitoring technology.

Recommendations Focus on Prioritization and Compensating Controls

The report concludes with a practical seven step process for mitigating IoT/ICS cyber risk based on recommendations developed by NIST and Idaho National Labs (INL), a global authority on critical infrastructure and ICS security.

Experts agree that organizations can’t fully prevent determined attackers from compromising their networks. As a result, they recommend prioritizing vulnerability remediation for “crown jewel” assets — critical assets whose compromise would cause a major revenue or safety impact — while implementing compensating controls such as continuous monitoring and behavioral anomaly detection (BAD) to quickly spot intruders before they can cause real damage to operations.

“Our goal is to bring board-level awareness of the risk posed by easily-exploited vulnerabilities in IoT/ICS networks and unmanaged devices — along with practical recommendations about how to reduce it,” said Omer Schneider, CyberX CEO and co-founder.

“Today’s adversaries — ranging from nation-states to cybercriminals and hacktivists — are highly motivated and capable of compromising our most critical operational systems,” said Nir Giller, CyberX GM, CTO and co-founder. “It’s now incumbent on boards and management teams to recognize the risk and ensure appropriate security and governance processes are in place across all their facilities to address it.”

Summary of Key Findings

  • Broken Windows: Outdated Operating Systems. 62 percent of sites have unsupported Microsoft Windows boxes such as Windows XP and Windows 2000 that no longer receive regular security patches from Microsoft, making them especially vulnerable to ransomware and destructive malware. The figure rises to 71 percent with Windows 7 included, which reaches end-of-support status in January 2020.
  • Hiding in Plain Sight: Unencrypted Passwords. 64 percent of sites have unencrypted passwords traversing their networks, making it easy for adversaries to compromise additional systems simply by sniffing the network traffic.
  • Excessive Access: Remotely Accessible Devices. 54 percent of sites have devices that can be remotely accessed using standard management protocols such as RDP, SSH and VNC, enabling attackers to pivot undetected from initial footholds to other critical assets. For example, during the TRITON attack on the safety systems in a petrochemical facility, the adversary leveraged RDP to pivot from the IT network to the OT network in order to deploy its targeted zero-day malware.
  • Clear and Present Danger: Indicators of Threats. 22 percent of sites exhibited indicators of threats, including suspicious activity such as scan traffic, malicious DNS queries, abnormal HTTP headers, excessive number of connections between devices and malware such as LockerGoga and EternalBlue.
  • Not Minding the Gap: Direct Internet Connections. 27 percent of sites analyzed have a direct connection to the internet. Security professionals and bad actors alike know that it takes only one internet-connected device to provide a gateway into IoT/ICS networks for malware and targeted attacks, enabling the subsequent compromise of many more systems across the enterprise.
  • Stale Signatures: No Automatic Antivirus Updates: 66 percent of sites are not automatically updating Windows systems with the latest antivirus definitions. Antivirus is the very first layer of defense against known malware — and the lack of antivirus is one reason why CyberX routinely finds older malware such as WannaCry and Conficker in IoT/ICS networks.

Follow this blog

Get a weekly email of all new posts.