Ernst and Young Industrial Products Survey

Ernst and Young Industrial Products Survey

The 2018 EY Industrial Products Survey was conducted among 500 Industrial Products (IP) executives whose businesses yield over $1B in annual revenue. These surveys are coming in with similar results. You can look at the results and say “Wow, almost half of executives at these companies see innovation as important, or see technology as important” or “How can half of all executives surveyed not see how important innovation is”.

I’ve had experience in manufacturing and marketing leadership and have studied it for many more years—and I lay most of the problems with manufacturing business squarely with (lack of) managerial leadership. I see these results and think that there will be many winners and just as many losers in the coming years.

The study surveyed executives from a variety of sectors including, aerospace and defense, industrial and mechanical components, machinery and electrical systems, chemicals and base materials, packaging and paper and wood. The survey was conducted between February 22, 2018 and March 22, 2018. The purpose of the study was to evaluate where IP companies fall on their journey towards continuous innovation.

Move over R&D: IP companies see digital technology and innovation as their path to success

  • 48% Percentage of respondents who view innovation as quite/extremely important for company success
  • 43% Percentage of businesses who are learning from and/or following the technology industry to influence innovation at their company
  • 67% Percentage of companies who plan to make significant levels of investment in innovation past traditional R&D over the next three years
  • 52% Percentage of businesses that say the adoption of emerging technologies will be quite important or critical to the success of their business in the next three years

Additional results from the survey include:

Facing a culture crisis: The perception of the IP industry is hindering the talent search

  • 67% agree/strongly agree that the image of the industrial products industry hurts when recruiting for needed skills
  • 38% that difficulty competing with tech-first companies for top talent is a leading barrier in filling the skills gap
  • 25% say that attracting/retaining top talent is one of the biggest drivers of their company’s technology investment
  • 64% agree/strongly agree that the IP industry needs to change their culture to thrive

IP is looking for outside inspiration. While the tech industry is the leading source, IP has a ways to go

  • 43% of respondents are learning from and/or following the technology industry to influence innovation at their company
  • Only 29% of business say they are extremely or quite innovative compared to close competitors
  • 82% of respondents have made minimal or no investment in AI today
  • 22% are learning from and/or following the automotive industry to influence innovation at their own company
  • 21% are learning from and/or following the consumer products industry to influence innovation at their own company

Robotics, mobile and big data, oh my! What is getting the largest share of investment attention?

  • 63% of respondents say that technology investments have driven measureable returns in agility to a significant/meaningful extent
  • 46% are making substantial or major investments in robotics and 56% predict they will in the next three years
  • 31% of businesses are increasing investment in emerging technologies in response to US tax reform
  • 31% says that big data/analytics will be most influential on their business over the next three years

Not a matter of if but when disruption will hit. IP companies are staying nimble in order to prepare

  • 49% of businesses say that preparation for disruption will be quite important or critical to the success of their business in the next three years
  • 52% of businesses say that flexibility to adapt to trends will be quite important or critical to the success of their business in the next three years
  • 53% of businesses say that access to specialized skills for emerging tech will be quite important or critical to the success of their business in the next three years
More Accurate Location Services

More Accurate Location Services

I met with the representative of an interesting company with a different take on indoor location services. Years ago I listened to a podcast called the Gillmor Gang and a famous (at the time) blogger Robert Scoble was always extolling the virtues of beacons. They will be everywhere and do all sorts of things, he repeated like a mantra.

Things got quiet, then I met Quuppa at Hannover Messe 2018. They have a beacon that has multiple antennas that does a better job of location than trying some of the older triangulation technologies.

The company has just announced a partner event, something that gives me an excuse to point you toward something interesting. I’m assuming that few if any of my readers are heading to Finland any time soon.

Quuppa, a Finnish company that delivers indoor positioning technology, announced its second annual partner event will take place June 5-7 in Helsinki, Finland. With a theme of “Defining the Future,” the event will feature speakers from Quuppa and its partner ecosystem, networking events and a Solutions Showcase Expo that demonstrates the current and future capabilities of real-time, global indoor location services and solutions. The event demonstrates the success Quuppa has had delivering on its go-to-market strategy that centers on providing an open positioning platform both in terms of hardware and software APIs, where each company focuses on what it does best, helping speed time-to-market.

The event will also highlight a day of presentations featuring “success stories,” with case study presentations that showcase the wide range of use cases for Quuppa’s unique indoor location technology. Featured success story topics include improving efficiency and customer experience in retail, asset tracking in large scale, Industry 4.0, manufacturing use cases from Japan, safety in a secure environment, generating business KPIs from location data, and employee safety indoors and outdoors.

Quuppa utilizes a unique combination of Bluetooth Low Energy (BLE) and the Angle of Arrival (AoA) methodologies, as well as advanced location algorithms that have been developed over the course of more than 15 years, to calculate highly accurate indoor positioning.

The Quuppa Ecosystem includes more than 70 best-of-breed companies worldwide that deliver best-in-class software solutions, tags and installation services, as well as system integrators and solution providers that offer end-to-end solutions. Companies across a wide range of industries, including manufacturing and logistics, retail, healthcare, sports, law enforcement and security, government and others rely on Quuppa and its ecosystem partners to unlock the full potential of indoor location-based services without compromising accuracy, compatibility or cost.

“Quuppa’s ecosystem continues to thrive, and our partner event is a place to gather and share expertise and best practices for global indoor location services,” said Fabio Belloni, head of Quuppa’s Partner Ecosystem. “What we are seeing more of as the ecosystem expands is partner companies seeking answers from their peers—not just from Quuppa—on wide-ranging topics such as how to launch a large-scale deployment, how to forge partnerships to grow in new geographic areas, how to best conduct a demo, and more. Companies are realizing they no longer need to develop everything on their own, they can choose best-of-breed solutions from our incredible ecosystem partners. It’s amazing to see how quickly the Quuppa Ecosystem is growing and the unique partnerships that are forming because of it.”

One such partnership that has emerged within the Quuppa Ecosystem is between Japanese motor manufacturer Nidec Corp. and Synapses Lab, an Italian technology design company. The companies work together utilizing Quuppa’s precision location technology, Synapses’ platform for tracking and 3D modeling, and Nidec’s electronics and engineering expertise to develop autonomous solutions that will deliver improved productivity and security in the manufacturing industry.

“Building a solid and reliable ecosystem is essential for our company,” said Domenico Mariotti, CEO and cofounder of Synapses. “Such a system enables us to tackle new challenges and different use cases every day, sometimes beating any expectations we ourselves had for our solutions.”

“In the Japanese manufacturing industry, some early birds are now trying to introduce IoT to their factories,” said Hiroshi Mochizuki, Small Precision Motor and Solutions business unit at Nidec. “They do not allow position data to have jitter, so Nidec decided to select Synapses’ platform utilizing the Quuppa Ecosystem. Synapses has successfully developed its platform, of which the filtering capability and database structure is duly optimized for Quuppa’s technology. Nidec strongly believes that problem-solving requests by its customers will be soon made, and good results in increase of productivity and security are expected to become visible in a short period of time, thanks to the availability of Synapses platform.”

Dell’s Commitment to a Legacy of Good Technology Plus People

Much time was devoted last week at Dell Technologies World to Dell’s Legacy of Good highlighting people and companies doing some really cool and worthwhile things. I’m especially impressed with the AeroFarms people (see photos below) who are using IoT to find a better way to grow wholesome vegetables. Hey engineers–maybe there’s a thought in here to spark your next creative interest.

Let me take you on a photo journey through the prominent booth at the DT World Expo floor highlighting a number of projects.

Plastic waste floating in the ocean is fast becoming an environmental catastrophe. Here is someone doing something about it.

How about genetic mapping improvements for fighting rare diseases?

A bug’s eye view with drones to help the honeybee population.

All kinds of wild robot science fiction stories are hitting main-stream media. How about a reality check?

Oh, another main-stream media hype fest–AI. In reality is can be a boost to business not in a scary way.

Here is a manufacturing product lifecycle story.

And the AeroFarms story.

 

Modernizing Manufacturing Operations With AI

Modernizing Manufacturing Operations With AI

Artificial Intelligence, always known as AI, along with its sometime companion robots leads the mainstream media hype cycle. It’s going to put everyone out of jobs, destroy civilization as we know it, and probable destroy the planet.

I lived through the Japanese robotic revolution-that-wasn’t in the 80s. Media loved stories about robots taking over and how Japan was going to rule the industrialized world because they had so many. Probing the details told an entirely different story. Japan and the US counted robots differently. What we called simple pick-and-place mechanisms they called robots.

What set Japanese industrial companies apart in those days was not technology. It was management. The Toyota Production Method (aka Lean Manufacturing) turned the manufacturing world on its head.

My take for years based on living in manufacturing and selling and installing automation has been, and still is, that much of this technology actually assisted humans—it performed the dangerous work, removing humans from danger, taking over repetitive tasks that lead to long-term stress related injuries, and performing work humans realistically couldn’t do.

Now for AI. This press release went out the other day, “With AI, humans and machines work smarter and better, together.” So, I was intrigued. How do they define AI and what does it do?

Sensai, an augmented productivity platform for manufacturing operations, recently announced the launch of its pilot program in the United States. Sensai increases throughput and decreases downtime with an AI technology that enables manufacturing operations teams to effectively monitor machinery, accurately diagnose problems before they happen and quickly implement solutions.

The company says it empowers both people and digital transformation using a cloud-based collaboration hub.

“The possibility for momentous change within manufacturing operations through digital transformation is here and now,” said Porfirio Lima, CEO of Sensai. “As an augmented productivity platform, Sensai integrates seamlessly into old or new machinery and instantly maximizes uptime and productivity by harnessing the power of real time data, analytics and predictive AI. Armed with this information, every person involved – from the shop floor to the top floor – has the power to make better and faster decisions to increase productivity. Sensai is a true digital partner for the operations and maintenance team as the manufacturing industry takes the next step in digital transformation.”

By installing a set of non-invasive wireless sensors that interconnect through a smart mesh network of gateways, Sensai collects data through its IIoT Hub, gateways and sensors, and sends it to the cloud or an on-premise location to be processed and secured. Data visualization and collaboration are fostered through user-friendly dashboards, mobile applications and cloud-based connectivity to machinery.

The AI part

Sensai’s differentiator is that it provides a full state of awareness, not only of the current status, but also of the future conditions of the people, assets and processes on the manufacturing floor. Sensai will learn a businesses’ process and systems with coaching from machine operators, process and maintenance engineers. It will then make recommendations based on repeating patterns that were not previously detected. Sensai does this by assessing the team’s experiences and historical data from the knowledge base and cross checking patterns of previous failures against a real-time feed. With this information, Sensai provides recommendations to avoid costly downtime and production shutdowns. Sensai is a true digital peer connecting variables in ways that are not humanly possible to process at the speed required on a today’s modern plant floor.

About the Pilot Program

Participation in Sensai’s pilot program is possible now for interested manufacturers. Already incorporated throughout Metalsa, a leading global manufacturer of automotive structural components, Sensai is set to digitally disrupt the manufacturing industry through AI, including those in automotive, heavy metal and stamping, construction materials, consumer goods and more.

Porfirio Lima, Sensai CEO, answered a number of follow up questions I had. (I hate when I receive press releases with lots of vague benefits and buzz words.)

1. You mention AI, What specifically is meant by AI and how is it used?

Sensai uses many different aspects of Artificial Intelligence. We are specifically focused on machine learning (ML), natural language processing (NLP), deep learning, data science, and predictive analytics. When used together correctly, these tools serve a specific use case allowing us to generate knowledge from the resulting data. We use NLP to enable human and computer interaction helping us derive meaning from human input. We use ML and deep learning to learn from data and create predictive and statistical models. Finally, we use data science and predictive analytics to extract insights from the unstructured data deriving from multiple sources. All of these tools and techniques allow us to cultivate an environment of meaningful data that is coming from people, sensors, programmable logistics controllers (PLCs) and business systems.

2. “Learn processes through operators”—How do you get the input, how do you log it, how does it feed it back?

Our primary sources of data (inputs) are people, sensors, PLCs, and business systems. In the case of people on the shop floor or operators, we created a very intuitive and easy to use interface that they can use on their cellphones or in the Human Machine Interfaces (HMIs) that are installed in their machines, so they can give us feedback about the root causes of failures and machine stoppages. We acquire this data in real-time and utilize complex machine learning algorithms to generate knowledge that people can use in their day-to-day operations. Currently, we offer web and mobile interfaces so that users can quickly consume this knowledge to make decisions. We then store their decisions in our system and correlate it with the existing data allowing us to optimize their decision-making process through time. The more a set of decisions and conditions repeats, the easier for our system is to determine the expected outcome of a given set of data.

3. Pattern? What patterns? How is it derived? Where did the data come from? How is it displayed to managers/engineers?

We create “digital fingerprints” (patterns) with ALL the data we are collecting. These “patterns” allow us to see how indicators look before a failure occurs, enabling us to then predict when another failure will happen. Data comes from the machine operators, the machines or equipment, our sensors, and other systems that have been integrated to Sensai’s IIOT hub.

We trigger alerts to let managers and engineers know that a specific situation is happening. They are then able to review it in their cellphones as a push notification that takes them to a detailed description of the condition in their web browser where they can review more information in depth.

4. What specifically are you looking for from the pilots?

We are not a cumbersome solution, for us is all about staying true about agility and value creation. We look for pilots that can give us four main outcomes:

– Learn more about our customer needs and how to better serve them

– A clear business case that can deliver ROI in less than 6 months after implementation and can begin demonstrating value in less than 3 months.

– A pilot that is easy to scale up and replicate across the organization so we can take the findings from the pilot and capitalize them in a short period of time.

– A pilot that can help Sensai and its customers create a state of suspended disbelief that technology can truly deliver the value that is intended and that can be quickly deployed across the entire organization.

Eye Tracking For Industrial Safety Analysis

Eye Tracking For Industrial Safety Analysis

From in-store shopper research to evaluating the gaze of an expert pianist, thousands are using wearable eye trackers to accurately measure what people see as they move freely in a range of real-world settings.

However, the design of the eye trackers has excluded certain sports and sectors from using the technology to its full potential due to the restrictions caused by protective headwear.

That is, until now. Two new versions of Tobii Pro Glasses 2 have been developed to fit easily under helmets and safety accessories, allowing athletes, industrial workers and other professionals to participate in eye tracking research. By moving the processor box below the temple the Helmet edition facilitates the use of most safety equipment while the Integration edition can be purpose fitted to most headwear thanks to it’s reduced frame and movable processor box.

Expanding the benefits of eye tracking for sports research

As sports become increasingly more competitive, athletes need to stay ahead of the game. To do so, many coaches are opting to make cutting edge technologies like eye tracking an integral part of their evaluation and training programs.

The beauty of eye tracking is that it reveals methods and techniques which occur instinctively or too quickly to be observed. Basketball, golf, and tennis are just a few of the sports utilizing wearable eye trackers to compare the visual strategies of experts and novices in a bid to identify the best techniques and fine-tune strategies.

William Rahm, a goalie coach with the Swedish Hockey League, is using eye tracking glasses to train his goalies. According to him, one of the greatest challenges as a coach is being able to understand what a player sees on the ice. Being able to watch in real-time how a goalie tracks the puck with their eyes and scans the ice during a game will help him expedite training and translate subconscious actions into, teachable strategies.

The new editions of these wearable eye trackers open up increased possibilities for this growing area of eye tracking research in sports.

Design improvements are delivering increased research opportunities across a range of sports like cricket, American football, and baseball as headgear limitations are greatly reduced or removed.

Improving safety in the workplace with eye tracking

Changes to the physical specifications of wearable eye trackers is also increasing the applications of their use to improve workplace safety. By seeing operations through the eyes of workers, management can gain greater insight into inefficient processes, distractions and unsafe conditions.

This is an important area for all. The University of Nebraska used wearable eye trackers to investigate the nature of human error on construction sites and their underlying causes. Their findings, about the importance of situational awareness, yielded a reliable model for predicting human error and preventing subsequent injuries on construction sites. This model can be used by safety managers to identify at-risk workers and prevent potentially fatal situations, which is of particular relevance to those in the sectors like mining and manufacturing.

There’s an increased scope for eye tracking research which is accompanied by other measures of human behavior. Through its recent integration with Qualisys, a provider of motion capture technology, it’s possible to access combined real-time output of both eye tracking and motion data. This provides essential information needed to further improve sports performance, diagnose visual-motor disorders, and much more.

 

Follow

Follow this blog

Get every new post delivered right to your inbox.