IoT Plus Predictive Maintenance Equals Business Sense

IoT Plus Predictive Maintenance Equals Business Sense

Dell Predictive Maintenance IoTPredictive maintenance benefits more from implementation of the Internet of Things than perhaps any other function at this early stage of wide-spread adoption.

 

 

 

I have written on this topic several times over the past couple of years.

Predictive Condition-Based Maintenance

IoT Testbed For Condition Monitoring To Predictive Maintenance

Use Of Internet of Things Enhances Preventive Maintenance

10 Myths About Predictive Analytics (SAP)

A foulup at Starbucks, Preventive Maintenance Prevents Production

Cloud Platforms For Internet of Things

Predictive or Condition-Based

The asset management community has not made it easy for us generalists with its terminology and definitions. Searching for predictive maintenance (PdM) often serves up results for condition-based maintenance. I am not going to attempt a final definition, but I found something that made sense on the OSIsoft Website. “PdM defines methods to predict or diagnose problems in a piece of equipment based on trending of test results. These methods use non-intrusive testing techniques to measure and compute equipment performance trends.”

Condition-based maintenance (CBM) is a methodology that combines predictive and preventive maintenance with real-time monitoring. PdM uses CBM systems to detect fault sources well in advance of failure, making maintenance a proactive process. CBM accurately detects the current state of mechanical systems and predicts the systems’ ability to perform without failure.

Business Risk

The Aberdeen Group, Report: Building the Business Case for the Executive, December 2013, found that 40 percent of 149 manufacturing executives identified failure of critical assets as the top risk they face.

How do we mitigate this risk? Predictive maintenance and condition-based maintenance are methodologies that help. One thing that makes these strategies work is data. With sufficient data along with a model of the asset’s condition at operational efficiency, reliability engineers can begin to predict failures before they happen.

Just like your car, productive assets pick the worst time to fail. This unplanned downtime is exceedingly expensive. Using predictive technologies, managers can plan for shutdowns at an appropriate time. The right parts can be on hand, labor lined up, production schedules adjusted, all because everything can be planned.

I’ve been talking with Dell often since October when I attended Dell World and it unveiled its Internet of Things initiative.

The interesting thing about Dell compared to almost everyone else I cover is that they approach the IT/OT convergence issue from the IT side rather than the OT side.

Dell’s first IoT product is something I think we’ll see more of–analytics at the edge combined with gateway technology that can bring disparate sources of data together, massage them, send them off to the cloud for further analytics, storage, and visualization. Dell’s current partners are SAP for predictive maintenance and Statistica for analytics.

Expect to see more of these partnerships evolve. In some cases, such as PTC, we are seeing acquisitions to add IoT capability. On the other hand, larger companies who do not have enough in common overall to merge will forge partnerships to offer complete solutions to customers.

We see some of this through the rise of Industrial Internet and IP organizations.

Collecting, moving, analyzing, and displaying data is becoming a big and important business. Customer executives will come to appreciate the work as their companies gain efficiency–and profits.

PTC Acquisition Bolsters Internet of Things Offering

PTC Acquisition Bolsters Internet of Things Offering

Following on to last week’s quick post of PTC’s Internet of Things acquisition of Kepware, I’ve gone a little deeper into the build up to and the strategy of the acquisition.

First off, the Internet of Things is a strategy. It isn’t a “thing.” PTC management seems to “get it.” As you’ll read further down, PTC is not pursuing a simple bolt-on strategy such as what several companies have come to me to help justify. This appears to be a serious attempt to assemble a complete ecosystem / platform going beyond a simple IoT play to offer a business solution to customers.

Warning note. PTC is acquiring software companies and attempting to blend their technologies into a coherent whole. We’ve witnessed many of these seemingly simple processes go south quickly. But PTC has done this before in its core market, then again in the services market. I have confidence the company will show the way in a complete solution.

PTC is paying a large premium for Kepware–Up to $120 million for a company with about $20 million in annual sales. It obviously thinks there is a tremendous upside to its IoT business.

From the press release: PTC announced it has signed a definitive agreement to acquire Kepware, a software development company that provides communications connectivity to industrial automation environments, for approximately $100 million, plus up to an additional $18 million based on achievement of certain strategic initiatives and financial results. The acquisition will enhance PTC’s portfolio of Internet of Things (IoT) technology, and accelerate the company’s entry into the factory setting and Industrial IoT (IIoT).

Founded in 1995 and located in Portland, Maine, Kepware serves customers in more than 120 countries in such industries as manufacturing, oil and gas, building automation, and power and utilities. The company’s flagship product, KEPServerEX, connects disparate devices and control systems, providing users with a single source of industrial data.

Kepware’s KEPServerEX will become a strategic component of the PTC ThingWorx IoT technology platform. Once the companies’ products are integrated, machine data will be able to be aggregated into the PTC ThingWorx platform, integrated with a wide array of internal and external information, and then automatically analyzed using ThingWorx machine learning capabilities. The integration will allow organizations to gain enterprise-wide insight and to proactively optimize mission-critical processes – enabling them to improve operational performance, quality, and time to market.

In its June 2015 research report, entitled The Internet of Things: Mapping the Value Beyond the Hype, the McKinsey Global Institute identified the factory as one of the largest sources of potential value to be realized from the adoption of the Internet of Things. PTC has established a dedicated business segment and has formed a strategic alliance with GE to pursue this brilliant factory opportunity. The acquisition of Kepware is intended to complement the alliance with GE.

Kepware and PTC share many common customers that will be able to realize value from the acquisition. Industrial environments already leveraging Kepware technology will be able to benefit from the added breadth of capabilities available in the PTC ThingWorx IoT technology platform. The acquisition of Kepware will also provide a fast-to-value connectivity option for PTC customers to gain visibility into data from a vast range of industrial controls and production equipment, enabling them to kick-start their smart, connected factory initiatives.

“PTC is committed to helping manufacturers, infrastructure operators, and others realize the enormous value inherent in the Internet of Things,” said Jim Heppelmann, president and CEO, PTC. “With this acquisition, we will gain entry into heterogeneous factory and operating environments with robust technology, an impressive list of customers, and a high-quality, profitable company with incredibly talented employees.”

“Kepware and PTC share a common vision of helping organizations realize the potential of the Industrial Internet of Things,” said, Tony Paine, CEO, Kepware. “We believe this acquisition will benefit our customers, partners, and employees – and ultimately drive software innovation for industrial automation markets. We are excited for the opportunity to become part of PTC.”

Over the past 12 months, privately-held Kepware generated approximately $20 million in revenue. PTC expects to draw on its credit facility to finance this transaction and expects Kepware to be neutral to its FY’16 non-GAAP EPS. The transaction is expected to close in early 2016, subject to customary closing conditions, including regulatory approval. PTC intends to maintain the Kepware partner ecosystem and to continue developing and enhancing the Kepware technology, once acquired.

PTC Internet of Things Acquisitions

2014

Thingworx

The acquisition of ThingWorx positions PTC as a major player in the emerging Internet of Things era.

Axeda

The acquisition of Axeda allows PTC to leverage its core IoT technology to enable companies to establish secure connectivity and remotely monitor and manage a wide range of machines, sensors, and devices.

2015

ColdLight

The acquisition of ColdLight’s Neuron automated predictive analytics platform will enrich PTC’s technology portfolio and extend PTC’s position as a leader in the Internet of Things (IoT) market.

GE Alliance

GE and PTC announced that the two companies are partnering to deliver an innovative manufacturing solution that will be available within GE’s Brilliant Manufacturing Suite. This new GE-branded manufacturing solution leverages the capabilities of PTC’s ThingWorx Industrial Internet of Things application enablement environment. The result is an industry-hardened solution that features flexible dashboards and powerful data analytics integrated with GE’s software capabilities on the manufacturing plant floor.

 

ThingWorx IoT Platform

  • ThingWorx Composer
    ThingWorx Composer is an end-to-end application modeling environment designed to help you easily build the unique applications of today’s connected world. ThingWorx Composer makes it easy to model the things, business logic, visualization, data storage, collaboration, and security required for a connected application.
  • Codeless Mashup Builder
    ThingWorx “drag and drop” Mashup Builder empowers developers and business users to rapidly create rich, interactive applications, real-time dashboards, collaborative workspaces, and mobile interfaces without the need for coding. This next-generation application builder reduces development time and produces high quality, scalable, smart connected applications which allows companies to accelerate the pace at which they can deliver value-add solutions, resulting in greater market share against new and existing competitors.
  • Actionable, Correlated Data from People, Systems and Things
    ThingWorx is the only platform that can store and correlate data from three dimensions: people, systems, and connected things. This capability allows companies to make business sense of the massive amounts of data from those three dimensions – making the data useful and actionable. The platform supports scale requirements for millions of devices, and provides connectivity, storage, analysis, execution, and collaboration capabilities required for applications in today’s connected world. It also features a data collection engine that provides unified, semantic storage for time-series, structured, and social data at rates 10X faster than traditional relational databases.
  • Search-Based Intelligence
    ThingWorx SQUEAL (Search, Query, and Analysis) brings search to the world of smart connected devices and distributed data. With ThingWorx SQUEAL’s interactive search capabilities, users can now correlate data that delivers answers to key business questions. Pertinent and related collaboration data, line-of-business system records, and equipment data get returned in a single search, speeding problem resolution and enabling innovation.
  • Collaboration
    ThingWorx dynamically and virtually brings together people, systems, and connected equipment, and utilizes live collaboration sessions that help individuals or teams solve problems faster. The ThingWorx data store becomes the basis of context aware collaboration and interaction among the systems users, further enhancing its value. Additionally, the tribal knowledge exposed during the process is automatically captured and indexed for use in future troubleshooting activities.
  • Flexible Connectivity Options
    ThingWorx “inclusive” connectivity strategy maximizes market opportunity and minimizes integration efforts. ThingWorx supports connectivity to devices via several methods, including 3rd party device clouds, direct network connections, Open APIs, and AlwaysOn connectivity.

KEPServerEX Overview

KEPServerEX is a communications platform that provides a single source of industrial automation data to all of applications. The platform design allows users to connect, manage, monitor, and control diverse automation devices and software applications through one intuitive user interface.

KEPServerEX leverages OPC (the automation industry’s standard for interoperability) and IT-centric communication protocols (such as SNMP, ODBC, and web services) to provide users with a single source for industrial data. Designed around the four product pillars of Proven Interoperability, Centralized Communications, On-Demand Scalability, and Industrial Strength, KEPServerEX is developed and tested to meet our customers’ performance, reliability, and ease-of-use requirements.

Product Features

KEPServerEX provides critical technical features that are centralized around accessibility, aggregation, optimization, connectivity, security, and diagnostics.

Accessibility

OPC

OPC is the leading standard for industrial automation connectivity. KEPServerEX supports the OPC Unified Architecture (OPC UA) specification and many of the OPC Classic specifications, including OPC Data Access (OPC DA), OPC Alarms and Events (OPC AE), and OPC Historical Data Access (OPC HDA).

Automation Interfaces

KEPServerEX has preferred access to leading automation software, including iFIX by GE Intelligent Platforms (NIO) and InTouch by Wonderware (SuiteLink/FastDDE). KEPServerEX also supports preferred access to Oracle MES and MOC solutions through their proprietary API.

IT Interfaces

KEPServerEX supports multiple interfaces for integration with IT applications, including ODBC for logging information to a database and SNMP for providing information to a Network Management System (NMS). With the advent of IoT and Big Data applications, KEPServerEX now includes the ability to communicate with Splunk software and cloud services via the Industrial Data Forwarder for Splunk.

Cloud Interfaces

With the IoT Gateway, KEPServerEX can seamlessly stream real-time industrial control data directly into Big Data and analytic software for Business Intelligence and Operational Excellence. Its customizable data format supports most MQTT and REST applications—enabling users to choose the vendors and communication methodologies right for their system.

Exporters

Some applications require information to be made available from a file or database. This information is typically exported at a predefined rate and includes both current and historical data. KEPServerEX has the ability to export historical Electronic Flow Measurement (EFM) data (via the EFM Exporter plug-in) or historical trend data (via supported drivers) to files and/or databases.

Aggregation

Centralized Platform

KEPServerEX is a communications platform that can support connections to thousands of data sources and provide information to hundreds of applications. The platform design simplifies the configuration of the connected applications by providing a single point of entry to all information. KEPServerEX also enables troubleshooting and issue diagnosis, provides control to the access of information based on user roles, and the ability to restrict the frequency of communications over bandwidth-limited telemetry-based environments.

Unified Configuration

KEPServerEX provides a unified configuration for managing connectivity to any data source. Anything can be added, configured, or deleted while the server is on-line and operational. Users can configure projects manually using a step-by-step wizard or programmatically through the export and import of XML and CSV files.

Data Storage and Retention

KEPServerEX is capable of archiving the real-time data it collects to local storage. By leveraging the Local Historian plug-in, applications can access this historical data (via OPC HDA) for future analysis. KEPServerEX can also store information in any ODBC-compliant database using the DataLogger plug-in, which has a store-and-forward capability for when a database is unreachable or unable to process the information fast enough.

Optimization

Data Conditioning and Reduction

In addition to providing raw values to connected applications, KEPServerEX can perform linear or square root scaling, perform basic arithmetic expressions, or apply deadband calculations on raw data and provide its aggregate. This provides minimal bandwidth and resource utilization by providing only the most critical updates.

Redundancy

KEPServerEX is used in critical applications where highly-reliable systems are required for maximum uptime. It includes the ability to define redundant network paths, primary and secondary data sources, and applicable failover criteria.

Load Balancing

In large networks that have many devices and applications requiring information, flexible control is necessary to allow for customized load-balancing of data collection and information flow. KEPServerEX provides tools to schedule the frequency of communications and throttle the demand across the network.

Communications

KEPServerEX optimizes communications with devices by aggregating identical requests from different applications whenever possible. Multiple demands on data can be batched together into the fewest requests possible. These optimizations are unique to each protocol, and are designed to reduce network overhead and device processing.

Machine-to-Machine Linking

In a typical industrial automation network, devices and controllers must communicate with one another even if they are not from the same manufacturer or do not support the same protocol. KEPServerEX provides the ability to establish links between data values in different data sources, allowing Machine-to- Machine (M2M) communications as close to the device as possible.

Connectivity

Driver-Based Access

KEPServerEX offers the broadest range of drivers available, supporting devices across various verticals within the Industrial Automation Industry. While most drivers act as masters that initiate requests, there are many drivers that can emulate a device where communications are driven by a controller. KEPServerEX drivers also support a variety of wired and wireless network mediums for Ethernet, serial, and proprietary networks. Although most drivers connect directly with hardware devices, some are designed to connect with other applications—such as databases, custom software applications, or other OPC servers.

Telemetry Environments

Industrial automation equipment can be deployed in a dry and heated factory, but it can also be installed inside a vehicle, on a remote pipeline, or in a well or pump station. In these remote environments, there are often a variety of telemetry solutions in use like cellular, radio, or satellite modems. KEPServerEX supports these telemetry configurations and provides additional ways to optimize communications through virtual networks, timing parameters, device demotion, and by scheduling communications across devices.

Rapid Deployment

As automation networks have grown from ten controllers to thousands of controllers, tools that aid and accelerate deployment are critical to a solution’s success. KEPServerEX provides many tools that speed the deployment of new devices, including Automatic Tag Generation (ATG) and Device Discovery (when supported by the device and communication protocols). Users can also export, manipulate, and import an XML project file to programmatically define the configuration.

Simulation

As systems are configured, components must be implemented and tested before the entire system becomes available. KEPServerEX allows any data source to be placed into simulation mode prior to deployment. In addition, the Memory Based driver can be configured to create a range of static and dynamic data points. The Advanced Simulator driver can leverage a database and its contents to drive application-specific simulation data into connected applications.

Security

Configuration

Access to the KEPServerEX configuration can be restricted through the User Manager. This tool allows the administrator to define user groups and users with restricted access to certain project configuration tasks, and also provides the ability to disconnect client applications.

Runtime

There are various tools available within KEPServerEX to control user access to the server, data source, or data values. The Security Policies plug-in limits access based on OPC UA user credentials while supporting default handling for anonymous users (both OPC UA and other client interfaces). The ability to dynamically address information can be disabled, limiting user access to tags defined within the project. KEPServerEX supports a number of secure client standards including SNMP (v3 security), OPC UA, and OPC DA (DCOM security) to further restrict access to the server, as well as a number of secure device protocols to meet the requirements of DNP3, SNMP, and OPC UA data sources. Secure data tunnels can be configured by leveraging multiple KEPServerEX instances at remote endpoints to pass data through firewalls and meet authentication and encryption requirements across the Internet.

Diagnostics

OPC Diagnostics

OPC Diagnostics provide a real-time and historical view of OPC events between any OPC client and the server, including method calls made by the client or callbacks made by the server. The ability to view actual communications and responses is invaluable when troubleshooting client accessibility. The diagnostics tools within KEPServerEX greatly speed deployment and reduce downtime.

Communications Diagnostics

Communication Diagnostics provide real-time capturing of the protocol frames transferred between the server and any device, as well as indications on the driver’s performance. All read and write operations can be viewed or tracked directly in an OPC client application using built-in diagnostics tags. This is useful when modifying key communication parameter settings (such as baud rate, parity, or Device IDs), because corrections are immediately visible.

Third-Party Diagnostics Integration

Diagnostics information can be viewed within KEPServerEX and by third-party applications. Diagnostics information is provided through system-defined tags and accessible to the same clients connecting to the data sources. KEPServerEX logs event information, which is accessible within the configuration tool or to any application that supports the OPC Alarms and Events specification.

PTC Acquisition Bolsters Internet of Things Offering

GE, The Digital Thread, The Digital Twin, The Digital Company

UPDATED: Carpenter’s title changed after I wrote this. Also GE Intelligent Platforms is now called GE Digital.

GE now bills itself as the “digital industrial” company. It has realized the benefits of technologies such as the Watchdog Agent developed by the Center for Intelligent Maintenance Systems for monitoring and prognostics and the Industrial Internet of Things within its own manufacturing processes—especially aircraft engines.
Evidently it now all starts with the “digital thread.” To understand what was meant by this term, I was chatted with Rich Carpenter, Chief of Strategy Technology Strategist for GE Intelligent Platforms Digital.

I asked if this was essentially just a marketing term. “The digital thread is a way to describe a concept,” he told me. “People have become good at “leaning” out the manufacturing process. Now we are leaning out the entire new product introduction cycle. They are optimizing to the end of the path from design to engineering. Closing that loop and carrying forward to manufacturing.”

Companies have accumulated big data infrastructures, so they are also leaning out interactions between digital silos by managing the data flows. This enables remote diagnostics.

Carpenter also mentioned a process I’m beginning to hear around the industry. First you connect things—people, sensors, machines. Then you collect and analyze the data you get from the process. Finally given all this, you can begin to optimize the process.

Official word

Here is a definition from GE, “While the Industrial Internet may be unchartered territory to some manufacturers, early adopters are starting to understand the benefits of the ‘Digital Thread – a web of data created the second they initiated their Industrial Internet journey. The digital thread is the result of several advanced manufacturing initiatives from the past decade, creating a seamless flow of data between systems that were previously isolated.

“This data is essentially the manufacturing health record, which includes data from everything to operator logs to weather patterns, and can be added to as needed. For example, you could compile the digital threads across multiple plants to get a full understanding of the efficiency and health of particular processes and product lines. This record provides data context and correlations between downtimes and outside factors, allowing operators to be proactive in their maintenance strategies.”

Health

I especially appreciate the term “manufacturing health record.” That’s a term Jay Lee at the IMS Center used often in the first phase of prognostics and the Watchdog Agent—a consortium that GE played an active part in.

Digital twin

We’ve heard of cyber-physical systems, and then Industry 4.0 which is a digital manufacturing model based upon it. Now we have a new term, “digital twin” which Carpenter says is a new way to describe a real world physical asset. Then, trying to optimize it, we’ll create a digital representation—a model based on statistics or physics. We run the model, then apply successes of the simulation in the real asset. Then feedback the information.

News release predictive analytics

GE held a conference in September that I could not attend. So, I talked with Rich Carpenter and some marketing people and obtained these press releases. These technologies and applications reveal where GE is heading as a Digital Industrial Company—and where it can take its customers, as well.

GE’s predictive analytics solution, SmartSignal, will be available as part of GE Digital’s Asset Performance Management (APM) solutions on the Predix platform, the purpose-built cloud platform for industry. SmartSignal powered by Predix will deliver anomaly detection with early warning capabilities that is SaaS-based and therefore at a lower cost and at a higher speed, making it accessible to a broader range of distributed equipment.

“Until now, advanced equipment monitoring and predictive anomaly detection capabilities have only been available to enterprises with significant resources, both in terms of machinery expertise and capital,” said Jeremiah Stone, General Manager, Industrial Data Intelligence Solutions for GE Digital. “Because of this, insight gained through predictive analytics has been limited to high value assets due to these cost and knowledge barriers.”

Companies see condition-based maintenance as a means to cut existing operations & maintenance costs. With SmartSignal powered by Predix, they will be able to capitalize on cloud and Big Data platforms to drive more efficient and productive operations.

“There is an unmet need in the industry for a cloud platform that supports the unique requirements of industrial data and operations,” said Harel Kodesh, Chief Technology Officer and Vice President & GM of Predix. “GE Predix is the first cloud platform to meet these demanding requirements. By leveraging GE’s deep domain expertise in information technology and operational technology, Predix provides a modern cloud architecture that is optimized for operational services like asset connectivity, managing and analyzing machine data, and industrial-grade security and regulatory compliance.”

Today, SmartSignal technology provides early warning detection for more than 15,000 critical assets in customer operations. According to May Millies, Manager of Power Generation Services, Salt River Project, “SmartSignal has us listening to the right data and using that data to impact our work operations.” Salt River Project provides reliable, reasonably priced electricity and water to more than two million people in Central Arizona. Integrating data to improve visibility into operations was a key to maintaining their standing with customers. “Now that we have realized the incredible performance of the software and how strong and robust it is, we are improving asset utilization across the enterprise.”

Brilliant manufacturing

In a second announcement, GE announced the next version of its Brilliant Manufacturing Suite. Field-tested and optimized within GE’s own factories, the suite maximizes manufacturing production performance through advanced real-time analytics to enable all manufacturers to realize GE’s Brilliant Factory vision.

“Today’s demands on manufacturers are driving an unprecedented rate of change, innovation and agility,” said Jennifer Bennett, General Manager for GE Digital’s Manufacturing Software initiatives. “Manufacturers are challenged to decide what to build, how to build it, where and when to build it, and how to efficiently maintain it. We believe that the key to optimizing the full product life cycle from design to service is through analytics of data that has been traditionally locked inside corporate silos.”

GE’s Brilliant Manufacturing Suite allows customers to begin to realize their own vision of a Brilliant Factory. Integrating and aggregating data from design to service and leveraging analytics to support optimal decision-making allows manufacturers to drive improvements in end-to-end production. Analyzing data in context and providing the right information at the right time allows for better decision support throughout the manufacturing process. Data-driven analytics encompassing machines, material, people and process will transform the factories of today into Brilliant Factories.

GE’s next generation Brilliant Manufacturing Suite includes:

  • OEE Performance Analyzer – available for early access today, it transforms real-time machine data into actionable production efficiency metrics so that Plant Managers can reduce unplanned downtime, maximize yield and increase equipment utilization.
  • Production Execution Supervisor – digitizes orders, process steps, instructions and documentation with information pulled directly from ERP and PLM systems. Factories are able to ship higher quality products and deliver new product introductions faster by getting the right information in the right hands to focus on the highest priority manufacturing tasks.
  • Production Quality Analyzer – real-time identification of quality data boundaries that catch non-conforming events before they occur. Quality engineers can analyze this information to identify patterns and trends that enable factories to ship higher quality products faster.
  • Product Genealogy Manager – builds a record of all personnel, equipment, raw materials, sub-assemblies and tools used to produce finished goods. Service personnel can respond to customer and regulatory inquiries with confidence, knowing who, what, when, where and how for an individual shipment.
Cisco IoT System Simplifies, Accelerates Internet of Things Deployments

Cisco IoT System Simplifies, Accelerates Internet of Things Deployments

Cisco IoEThe Internet of Things (IoT) is nothing if not about connectivity. Connecting edge devices to control and information platforms is nothing new to industrial systems, but technology advances attempt to make things easier and faster to deploy.

Cisco’s connectivity products and technologies have long been at the core of enterprise networks. Cisco has also partnered with automation companies such as Rockwell Automation, Emerson Process Management, and Honeywell Process Solutions.

Cisco just announced its latest extensions to the technology. The new Cisco IoT System addresses the complexity of digitization “with an infrastructure that can manage a growing mix of endpoints, platforms and the data deluge.”

Within the new Cisco IoT System framework, Cisco introduced more than 15 new IoT products across six pillars to address the complexities of digitization and help organizations deploy, accelerate and innovate with IoT. Together, the framework supports the infrastructure growth requirements that organizations are facing with IoT by helping raise operational efficiency, create new services, and improve quality and security.

Six­Pillar Approach for Cisco IoT System

The Cisco IoT System integrates six pillars that must come together for a successful IoT solution and deployment:

  1. Network Connectivity: Includes purpose-­‐built routing, switching, and wireless products available in ruggedized and non‐ruggedized form factors.
  2. Fog Computing: Extends cloud connectivity closer to the edge to produce immediate insights and efficiently analyze and manage d Cisco predicts that 40% of IoT ­‐created data will be processed in the fog by 2018. Over 25 of Cisco’s network products are enabled with Cisco’s fog computing or edge data processing platform, IOx.
  3. Security: Connects cyber and physical security for visibility into both physical and digital assets, to increase protection and expand operational benefit Cisco’s IP surveillance portfolio and network products with TrustSec security and cloud/cyber security products allow users to monitor, detect and respond to combined IT and Operational Technology (OT) attacks. Organizations in industries such as manufacturing and energy are increasingly working to integrate proprietary   process control systems with the IP network infrastructure, which requires a multi‐layer security approach to maintain logical separation of business functions.
  4. Data Analytics: The Cisco IoT System provides an optimized infrastructure to implement analytics and harness actionable data for both the Cisco Connected Analytics Portfolio and third party analytics
  5. Management and Automation: The IoT System provides enhanced security, control and support for multiple siloed functions to deliver an easy-­‐to-­‐use system for managing an increasing volume of endpoints and applications, that field operators need an easy-­‐to-­‐use management system
  6. Application Enablement Platform: Offers a set of APIs for industries and cities, ecosystem partners and third-­‐party vendors to design, develop and deploy their own applications on the foundation of IoT System capabilities.

Over 15 new IoT products across the six pillars of the IoT System:

Network Connectivity Highlights:

IE5000: Purpose-­‐built IE switch that brings connectivity to factory-­‐level manufacturing and cities.

IW3702: Wireless access point for connected mass transit systems and city Wi-­‐Fi. IR 809, IR 829 series: Introducing 7 new industrial routers with Wi-­‐Fi and 4G/LTE connectivity, ideal for transportation or IoT application deployments.

4G/LTE module for CGR 1000 for utilities, Mobile IP Gateway (MIG-­2450) for connected rail solutions, and 5921 Embedded Services Routers for defense extend reach of industrial networking into remote environments.

Physical and Cyber Security

360° 5MP & 720p IP cameras: These high-­‐quality cameras cater to versatile environments and can host 3rd party software applications. Features include 360° view for situational awareness and audio and digital sensors.

Physical Security Analytics: Camera applications include audio detection, sensor aggregation, audio message triggers, metadata generation, local video player and video summarization.

Data Analytics

Fog Data Services: Allow operators to create policies that monitor and take actions on data flowing through the IoT environment (data-­‐in-­‐motion). It resides on the IOx platform so users can integrate custom policies with applications.

Management and Automation

IoT Field Network Director: This management software allows operators to monitor and customize IoT network infrastructure for industrial scale.

Fog Director: Allows central management of multiple applications running at the edge. This management platform gives administrators control of application settings and lifecycle, for easier access and visibility into large-­‐scale IoT deployments.

 

Partners support Cisco IoT System and IOx for fog computing

Cisco IoT System enables industry verticals such as manufacturing, oil & gas, utilities, transportation, public safety and smart cities to deploy and accelerate IoT solutions and realize business benefits with targeted solutions. Key industry leaders have already ported their software applications to run on the Cisco Fog Computing system, including GE (Predix), Itron (Riva), OSISoft (PI), smartFOA in Japan, Bitstew, Davra, SK Solutions, Toshiba and more.

Cisco also announced the addition of Covacsis, which is taking advantage of Cisco IOx to provide predictive analytics to manufacturing industries. Cisco also provides comprehensive consulting and professional services for IoT. Our leading networking expertise combined with our technology partners’ expertise helps accelerate transformation and ensures IT and operational technology alignment.

Rockwell Connected Enterprise SlideSujeet Chand, senior vice president and CTO, Rockwell Automation, noted, “Together with Cisco, we are helping customers derive value from the Internet of Things, by simplifying connectivity of assets on the plant floor with the rest of the enterprise and with remote experts. By focusing on the key values of the Cisco approach to IoT, our mutual customers can benefit from improved decision making that can lead to streamlined business and manufacturing processes, reduced network complexities and improved security. Rockwell Automation and Cisco take a collaborative approach to bring OT and IT together to deliver performance-­‐critical information to drive business outcomes across The Connected Enterprise.”

Honeywell User Group 2015

Honeywell User Group 2015

Since I have to follow the Honeywell User Group (number 40, by the way) from afar, I’m relying on tweets and any Web updates or articles I can find.

So far, Walt Boyes (@waltboyes, and Industrial Automation Insider) has posted a few things to Twitter, mostly slides from presentations that are barely legible; Aaron Hand (Automation World) has posted a few tweets; Mehul Shah (LNS Research) has a couple of tweets—interestingly saying he things as an analyst that Honeywell has all the elements of a complete IIoT solution—hmmm; and Larry O’Brien, analyst at ARC Advisory Group has published a few tweets. If they would post links to articles in the tweets, that would be interesting.

Putman Publishing (Control magazine) once again is doing a digital “show daily” and therefore is posting several articles a day and blasting out an email daily.

Walt sent a tweet about obsolescence of open systems to which software geek Andy Robinson (@Archestranaut) replied. I didn’t understand until I saw Paul Studebaker’s article online (see below). The open systems in use today are getting long in the tooth. They feature Microsoft Windows XP—evidently never getting upgrades. Now there is no Microsoft support, the world has moved on, and all these DCS interfaces based on PCs are getting ancient.

Paul Studebaker, Control magazine’s editor-in-chief, reported on the keynote presented by Vimal Kapur, Honeywell Process Solutions president.

“ ‘Since Q4 of last year, since oil prices have changed, capital investments have been reduced’, said Kapur. Investments were up about 20% in 2010 and 2011, and remained flat through 2014, but so far, 2015 is down about 12%. Operational expense spending is also off.”

Kapur described how Honeywell is helping operators meet those challenges with strategies, technologies and services.

1. Honeywell will expand the role of the distributed control system (DCS). Now, the DCS has become a focal point of all control functions, taking on the functionality of PLC, alarm, safety, power management, historian, turbine control and more. Having a single system and user leverages scarce resources, and a single platform leveraging standards does more with less.

2. Cloud computing is becoming a standard part of HPS automation projects, with a logarithmic increase in the number of virtual machines in the HPS cloud over the past two years.

3. While process safety management has always depended on detecting unsafe situations, preventing them from causing an incident or accident and protecting people from any consequences.

4. For cybersecurity, Honeywell has created a team of specialists who can do audits, identify vulnerabilities and recommend solutions. But cybersecurity requires constant monitoring, so consider using a cybersecurity dashboard, “a step toward enabling a much higher level of proactivity by identifying cyber threats before it’s too late,” Kapur said.

5. Standardization holds great promise for reducing cost and time to production by allowing pre-engineering of control systems.

6. Honeywell continues to expand and refine its field device products to offer a complete line of smart instrumentation that can be preconfigured and use the cloud for fast auto-commissioning, and that have full auto-alerts and diagnostics to enable predictive maintenance.

7. OPC UA is becoming the key to leveraging the Industrial Internet of Things (IIoT).

8. Kapur told attendees their existing investments are not fully leveraged.

9. Expansion of mobility is changing workflows and the responsibilities of individuals.

10. Honeywell is driving more outcome-based solutions in services.

Jim Montague, Control executive editor, reported on the technology keynote.

(Jim, you need to update your bio on the Control Global page)

“This is a transformative time in process controls, rivaling the open process systems introduced in the early 1990s,” said Bruce Calder, new CTO and vice president of HPS, in the “Honeywell Technology Overview and New Innovations” session on the opening day of Honeywell User Group (HUG) Americas 2015, June 22 in San Antonio, Texas. “Today, the words are cloud, big data, predictive analytics and IoT, but this situation is similar to when Honeywell pioneered and invented the DCS in the early 1970s. For instance, our Experion PKS integrates input from many sources, which is what big data and the cloud aim to do, and our Matrikon OPC solution gives us the world’s leading contender for enabling IoT in the process industries. And all these devices are producing lots more data, so the question for everyone is how to manage it.

“This is all part of the digital transformation that Honeywell has been leading for years. So Experion and our Orion interfaces enable IoT because they collect and coordinate vast amounts of data, turn it into actionable information and turn process operators into profit operators. At the same time, Honeywell enables customers to retain their intellectual property assets as they modernize and do it safely, reliably and efficiently.”

My analysis:

1. The downturn in the price of a barrel of oil whose impact we first noticed with the decline in attendance at the ARC Forum in February has really impacted Honeywell’s business.

2. Honeywell, much like all technology suppliers, addresses the buzz around Internet of Things by saying we do it—and we’ve always done it. (mostly true, by the way)

3. Otherwise, I didn’t see much new from the technology keynote—at least as it was reported so far.

4. I got some good reporting, but It’s a shame that all the media has retrenched into traditional B2B—reporting what marketing people say. You can read that for yourself on their Websites. Context, analysis, expertise are all lost right now. Maybe someone will spring up with the new way of Web reporting.

At any rate, it sounds like a good conference. About 1,200 total attendance. Even with oil in the doldrums, the vibes should be strong.

Follow this blog

Get a weekly email of all new posts.