Industrial Internet Consortium Releases Endpoint Security Best Practices White Paper

Industrial Internet Consortium Releases Endpoint Security Best Practices White Paper

Security comes first to mind whenever we begin discussing connecting things in an industrial setting. And, of course, nothing connects things like the Industrial Internet of Things (IIoT). One place we often fail to consider in our security planning is at the endpoint of the network. Organizations and companies have been providing valuable assistance to developers by releasing best practices white papers. Here is one from a leading Industrial Internet organization.

The Industrial Internet Consortium (IIC) announced publication of the Endpoint Security Best Practices white paper. It is a concise document that equipment manufacturers, critical infrastructure operators, integrators and others can reference to implement the countermeasures and controls they need to ensure the safety, security and reliability of IoT endpoint devices. Endpoints include edge devices such as sensors, actuators, pumps, flow meters, controllers and drives in industrial systems, embedded medical devices, electronic control units vehicle controls systems, as well as communications infrastructure and gateways.

“The number of attacks on industrial endpoints has grown rapidly in the last few years and has severe effects. Unreliable equipment can cause safety problems, customer dissatisfaction, liability and reduced profits,” said Steve Hanna, IIC white paper co-author, and Senior Principal, Infineon Technologies. “The Endpoint Security Best Practices white paper moves beyond general guidelines, providing specific recommendations by security level. Thus, equipment manufacturers, owners, operators and integrators are educated on how to apply existing best practices to achieve the needed security levels for their endpoints.”

The paper explores one of the six functional building blocks from the IIC Industrial Internet Security Framework (IISF): Endpoint Protection. The 13-page white paper distills key information about endpoint device security from industrial guidance and compliance frameworks, such as IEC 62443, NIST SP 800-53, and the IIC IISF.

Equipment manufacturers, industrial operators and integrators can use the Endpoint Security Best Practices document to understand how countermeasures or controls can be applied to achieve a particular security level (basic, enhanced, or critical) when building or upgrading industrial IoT endpoint systems, which they can determine through risk modeling and threat analysis.

“By describing best practices for implementing industrial security that are appropriate for agreed-upon security levels, we’re empowering industrial ecosystem participants to define and request the security they need,” said Dean Weber, IIC white paper co-author, and CTO, Mocana. “Integrators can build systems that meet customer security needs and equipment manufacturers can build products that provide necessary security features efficiently.”

While the white paper is primarily targeted at improving the security of new endpoints, the concepts can be used with legacy endpoints by employing gateways, network security, and security monitoring.

The full Endpoint Security Best Practices white paper and a list of IIC members who contributed can be found on the IIC website.

OPC Foundation Cites Advancements at Recent ARC Forum

OPC Foundation Cites Advancements at Recent ARC Forum

The OPC Foundation was active during the recent ARC Industry Forum in Orlando as a Platinum Sponsor and presenting a press conference. With OPC UA released and in use and the publish/subscribe about to be release, OPC Foundation’s emphasis has been on companion specifications. It had a joint press conference with the FieldComm group to discuss its joint working group and then released news of a released companion specification with Ethernet Powerlink. The last release, something I was able to work on pre-release review, concerns a study with ARC Advisory Group on adoption of the UA specification.

Below are some details. More at the Foundation website.

OPC and FieldComm

The OPC Foundation and FieldComm Group announced an alliance to advance process automation system multi-vendor interoperability and simplified integration by developing a standardized process automation device information model.

A joint working group between OPC Foundation and FieldComm Group, tasked with developing a protocol independent companion specification for process automation devices, was formed in late 2017. The goal of the working group is to leverage the extensive experience of FieldComm Group with the HART and FOUNDATION Fieldbus communication protocols to standardize data, information, and methods for all process automation devices through FDI using OPC UA. The OPC UA base information model and companion Device Information (DI) specification will be extended to include the generic definition and information associated with process automation devices.

The OPC Foundation and FieldComm Group have worked together for over a decade, initially working on the development of the EDDL specification and most recently on the creation of FDI technology.

“FDI provides the new standard for device integration to deliver a protocol independent path to configuration, diagnostics and runtime operation for process devices,” states Ted Masters, President and CEO of FieldComm Group. “The partnership between OPC Foundation and FieldComm Group further builds upon the common information model of both to deliver process automation data in context which is the key to enabling value from enterprise systems and analytics. The 350+ suppliers of devices and applications that are members of FieldComm Group have an opportunity to benefit from the key initiative to develop a standard process automation information model by their adoption of FDI and OPC UA technologies.”

“I’m excited that the OPC Foundation and FieldComm Group are working together on this important initiative, and will be partnering with other organizations, end-users and suppliers to make the dream of a standardized process automation device information model a reality. This is truly a breakthrough in our industry that will provide significant operational benefits across all points of the value chain,” states Thomas J. Burke, OPC Foundation President and Executive Director.

“This important collaboration will provide a solid foundation for standardization of devices that will serve as the base infrastructure for the numerous other collaborations that the OPC Foundation is doing across international boundaries,” says Stefan Hoppe, OPC Foundation Global Vice President.

The joint working group plans to release an extensible, future-proof process automation information model specification during the first quarter of 2019.

OPC and Powerlink

An OPC UA companion specification is now available for POWERLINK according to a joint announcement by the OPC Foundation and the Ethernet POWERLINK Standardization Group (EPSG). The companion specification describes how payload data is exchanged between POWERLINK and any OPC UA platform. The result is integrated communication from the sensor to the cloud.

“As technologies, OPC UA and POWERLINK complement each other perfectly,” emphasized Thomas Burke, President of the OPC Foundation, in his announcement. “POWERLINK is among the leading real-time bus systems used in plants and machinery. Together with OPC UA, POWERLINK networks can now communicate seamlessly and securely with the IT environment and into the cloud.”

“This specification allows OPC UA and POWERLINK to fuse into a single network,” added Stefan Schönegger, Managing Director of the EPSG. “We’re then able to join devices from different manufacturers and across different levels of the automation pyramid into a single, cohesive system.”

A joint working group between the OPC Foundation and the EPSG had been working on the specification since 2016. The document can be downloaded from the OPC Foundation website.

OPC UA Adoption

OPC Foundation announced today the release of an in-depth ARC Advisory Group report on the important role the OPC data connectivity standards play in control automation today and in future IIoT and Industrie4.0 based solutions.

Key ARC report findings confirmed that with an estimated global install base of over 45 million units, OPC is the de facto standard for open data connectivity and that OPC UA is well positioned to serve as the next data connectivity foundation for control automation applications in traditional industrial settings and new ones like building automation, transportation, and others. Key contributing factors to the continued success of OPC UA included the scalability, performance, and robustness of the technology and the large community of end-users, vendors, and other standards bodies actively working with the OPC Foundation to best utilize OPC UA in their applications.

According to Thomas Burke, OPC Foundation president, “the [ARC report] findings accurately reflect what we [OPC Foundation] have been seeing from an adoption and collaboration point of view. I highly recommend reading this ARC report for a high level perspective of what OPC UA is doing in the market and the future of data connectivity”

Commenting on the popularity of the OPC UA standard, Mr.Burke explained “OPC UA has something to offer for everyone from end-users and product vendors to other standards bodies. After people look at what is really out there as far as a single standard that has the scalability, performance, and flexibility to meet the challenges of modern data connectivity and interoperability and has the reputation and a large enough adoption base needed to make it a safe investment – they come to realize OPC UA is the real deal.”

“OPC technology has become a de facto global standard for moving data from industrial controls to visualization up to MES/ERP and IT cloud levels”, according to Craig Resnick, Vice President, ARC Advisory Group. “The rapid expansion of OPC UA in automation, IIoT, and into new, non-industrial markets suggests that OPC will remain an important technology for multivendor secured interoperability, plant floor-to-enterprise information integration, and a host of other applications yet to be envisioned.”

Digital Transformation Council

Digital Transformation Council

Digital Transformation has generated so much news that company executives have begun ordering projects and task forces within the company to begin that transformation. The pressure on engineers and IT people increases with each new directive. To help clients deal with these new directives, ARC Advisory Group launched the Digital Transformation Council (DTC) at its 2018 Forum.

The council is a member community for industry, energy, and public-sector professionals. Membership is by invitation only and restricted to end users of digital transformation technology, such as professionals working for manufacturers, utilities, and municipalities. There is no fee to join.

“As data-driven market disruption grows, professionals across similar industries need to connect and learn from one another,” according to Jesus Flores-Cerrillo, Associated R&D Director at Praxair, one of the world’s largest providers of industrial gases. He added, “It’s becoming mission-critical to understand how to use data to develop services and products and optimize operations and assets. That can only be accomplished by understanding the possibilities provided by modern data tools such as artificial intelligence, machine learning, and digital twins.”

“We are delighted to support the Digital Transformation Council by bringing members together in person and online,” commented Greg Gorbach, Vice President at ARC Advisory Group. “This community will enable individuals and companies to get up to speed quickly on digital transformation innovations and share ideas about what provides value and what doesn’t.”

Each February, a member-only meeting, anchored to the annual ARC Industry Forum, will bring the Council together to set the focus and agenda for the coming year. Members will also gather via virtual quarterly meetings to discuss research findings, activities, and other topics.

In addition to annual in-person meetings and quarterly virtual meetings, Digital Transformation Council members will have year-round access to research and fellow members via an online community. ARC Advisory Group’s role will be to conduct research, organize meetings, provide venues, and facilitate peer-to-peer discussions. ARC will also deliver technical support for the group’s online presence.
The DTC will address topics such as analytics, industrial Internet of Things (IIoT), artificial intelligence and machine learning, cybersecurity, and additive manufacturing.

2018 ARC Industry Forum to Explore Digital Transformation

2018 ARC Industry Forum to Explore Digital Transformation

The 22nd annual ARC Industry Forum in Orlando, Florida, Feb. 12-15, 2018, will focus on the new digitally-enabled technologies, approaches, and business processes that are disrupting the way industry, infrastructure, and municipalities around the world operate and serve their respective customers.

This digital transformation impacts every aspect of business, industry, and infrastructure.

Digital Transformation Changes Everything

“We’re seeing signs of positive disruption via digital transformation everywhere we look,” said Andy Chatha, president and founder of ARC Advisory Group. “Today’s smart, connected, information-driven industrial enterprises are making better use of their assets and data to improve business and regulatory performance. We’re seeing a similar transformation across infrastructure and within municipalities.”

But Chatha also points out that challenges remain. “Without robust cybersecurity, connected enterprises are more vulnerable to hackers and other cyber-criminals. Also, today’s shortage of the skilled knowledge workers needed for successful digital transformation will become an increasing constraint.”

To help meet these and other challenges, ARC has helped organize an end user-driven Digital Transformation Council, which will convene for the first time at this year’s Forum.

Learn from Industry Leaders

Experts from industry, infrastructure, government, and academia will convene in Orlando in February to further explore these and related topics.

Keynote speakers will include Kenny Warren, Vice President of Engineering at ExxonMobil Research & Engineering, who will speak on the business goals of the company’s Open Process Automation initiative; and Jason Handley, Director of Smart Grid Emerging Technology and Operations at Duke Energy, who will speak on new technologies that are impacting the emerging Smart Grid. Mr. Warren and Mr. Handley will be joined by many other senior executive presenters at the ARC Forum.

Forum topical tracks include:

  • Advanced Analytics and Machine Learning
  • Asset Performance Management
  • Automation Innovations (including Open Process Automation)
  • Connected Smart Machines
  • Cybersecurity and Safety
  • Industrial Internet Platforms
  • IoT Network Edge Infrastructure and End Devices
  • Convergence of Information, Operational, and Engineering Technologies

Join in the Conversation

The upcoming ARC Industry Forum in Orlando offers a unique opportunity for professionals from industry and infrastructure to learn from their peers and share their own experiences and lessons learned in their respective digital transformation journeys.

Industrial Internet Consortium Gaining Momentum With Partners and Testbed

Industrial Internet Consortium Gaining Momentum With Partners and Testbed

The Industrial Internet Consortium (IIC) has been incredibly active over the past month. While I’ve been traveling, news releases and interview opportunities have been pouring in.

In brief:

  • IIC and Avnu Alliance Liaison
  • IIC and the EdgeX Foundry Announce Liaison
  • IIC Develops Smart Factory Machine Learning for Predictive Maintenance Testbed
  • IIC Publishes Edge Computing Edition of Journal of Innovation

Related:

See my white paper on OPC UA and TSN. I wrote this following interviews at Hannover for the OPC Foundation and subsequent travels to see people. I think this is a powerful combination for the future.

Why it’s important:

These news items when viewed collectively show momentum for what is happening with the Industrial Internet—or as some say the Industrial Internet of Things. These technologies are soon to be powerful business drivers for a new age of manufacturing.

The News:

Liaison with Avnu Alliance

The Industrial Internet Consortium (IIC) and Avnu Alliance (Avnu) have agreed to a liaison to work together to advance deployment and interoperability of devices with Time Sensitive Networking (TSN) open standards.

Under the agreement, the IIC and Avnu will work together to align efforts to maximize interoperability, portability, security and privacy for the industrial Internet. Joint activities between the IIC and the Avnu will include:

  • Identifying and sharing IIoT best practices
  • Realizing interoperability by harmonizing architecture and other elements
  • Collaborating on standardization

“Both Avnu and the IIC are well aligned to pursue the advancement of the IIoT. An example of this is Avnu’s participation in the IIC TSN testbed where members have an opportunity to try their equipment and software on the testbed infrastructure. This provides the participants with the ability to discover what’s working and what is not and provide feedback that helps speed market adoption,” said Gary Stuebing, IIC liaison to Avnu. “The lessons learned in our TSN testbed fuel the ability of both of our organizations. TSN could open up critical control applications such as robot control, drive control and vision systems.”

“Our liaison agreement and work with the IIC TSN Testbed demonstrates real-world applications and solutions with TSN and helps to accelerate readiness for the market. The testbed stands as a showcase for the value that TSN standards and ecosystem of manufacturing applications and products bring to the market, including the ability for IIoT to incorporate high-performance and latency-sensitive applications,” said Todd Walter, Avnu Alliance Industrial Segment Chair. “Our collaboration with IIC and the work coming out of the TSN Testbed is already having a direct impact on suppliers and manufacturers who see the technology as a value add for their system structure.”

Avnu and IIC are meeting for a TSN Testbed plugfest later this month to evaluate and trial TSN device conformance tests that are being developed as a baseline certification in the industrial market.

Avnu creates comprehensive certification tests and programs to ensure interoperability of networked devices. The foundational technology enables deterministic synchronized networking based on IEEE Audio Video Bridging (AVB) / Time Sensitive Networking (TSN) base standards. The Alliance, in conjunction with other complementary standards bodies and alliances, provides a united network foundation for use in professional AV, automotive, industrial control and consumer segments.

 

Agreement with EdgeX Foundry

The Industrial Internet Consortium and EdgeX Foundry, an open-source project building a common interoperability framework to facilitate an ecosystem for IoT edge computing, announced they have agreed to a liaison.

Under the agreement, the IIC and the EdgeX Foundry will work together to align efforts to maximize interoperability, portability, security and privacy for the industrial Internet.

Joint activities between the IIC and the EdgeX Foundry will include:

  • Identifying and sharing best practices
  • Collaborating on test beds and experimental projects
  • Working toward interoperability by harmonizing architecture and other elements
  • Collaborating on common elements
  • Periodically hosting joint seminars

“We are excited about working with EdgeX Foundry,” James Clardy, IIC liaison to EdgeX Foundry. “And we look forward to leveraging the experiences of the IIC to help further accelerate the adoption of the industrial Internet.”

“EdgeX Foundry’s primary goal is to simplify and accelerate Industrial IoT by delivering a unified edge computing platform supported by an ecosystem of solutions providers,” said Philip DesAutels, senior director of IoT for The Linux Foundation. “Formalizing this liaison relationship with the IIC is fundamental to unlocking business value at scale. Together, we will provide better best practices that will drive the unification of the industrial IoT.”

Hosted by The Linux Foundation, EdgeX Foundry has an ecosystem of more than 60 vendors and offers all interested developers or companies the opportunity to collaborate on IoT solutions built using existing connectivity standards combined with their own proprietary innovations. For more information, visit

 

Smart Factory Machine Learning for Predictive Maintenance Testbed

The Industrial Internet Consortium announced the Smart Factory Machine Learning for Predictive Maintenance Testbed. The testbed is led by two companies, Plethora IIoT, a company, designing and developing cutting-edge answers for Industry 4.0, and Xilinx, the leading provider of All Programmable technology.

This innovative testbed explores machine-learning techniques and evaluates algorithmic approaches for time-critical predictive maintenance.  This knowledge leads to actionable insight enabling companies to move away from traditional preventative maintenance to predictive maintenance, which minimizes unplanned downtime and optimizes system operation.  This would ultimately help manufacturers increase availability, improve energy efficiency and extend the lifespan of high-volume CNC manufacturing production systems.

“Testbeds are the major focus and activity of the IIC and its members. We provide the opportunity for both small and large companies to collaborate and help solve problems that will drive the adoption of IoT applications in many industries”, said IIC Executive Director Dr. Richard Mark Soley. “The smart factory of the future will require advanced analytics, like those this testbed aims to provide, to identify system degradation before system failure. This type of machine learning and predictive maintenance could extend beyond the manufacturing floor to have a broader impact to other industrial applications.”

“Downtime costs some manufacturers as much as $22k per minute. Therefore, unexpected failures are one of the main players in maintenance costs because of their negative impact due to reactive and unplanned maintenance action. Being able to predict system degradation before failure has a strong positive impact on machine availability: increasing productivity and decreasing downtime, breakdowns and maintenance costs,” said Plethora IIoT Team Leader Javier Diaz.  “We’re excited to lead this testbed with Xilinx and work alongside some of the leading players in IIoT technologies. This is a unique opportunity to test together machine learning technologies with those involved in the testbed at different development levels starting from the lab through production environments, where a real deployment solution is utilized. As a result, from these experiences, we can significantly reduce the time-to-market of Plethora IIoT solutions oriented to maximize smart factory competitiveness.”

”Xilinx is committed to providing the Industrial IoT industry with our latest All Programmable SoC and MPSoC platforms – ideal for sensor fusion, real-time, high-performance processing, and machine learning from the edge to the cloud,” stated Dan Isaacs, Director of Corporate Strategic Marketing and Market Development for IIoT and Machine Learning at Xilinx. “The combination of these highly configurable capabilities drives the intelligence of the smart factory.”

Additional IIC member companies participating in this testbed are: Bosch, Microsoft, National Instruments, RTI, System View, GlobalSign, Aicas, Thingswise, Titanium Industrial Security, and iVeia. They provide technologies to enable the Smart Factory Machine Learning testbed, including:

  • Factory automation
  • OT and IT security
  • Edge to cloud machine learning and analytics
  • Time-sensitive networking (TSN)
  • Data acquisition
  • Smart sensor technology
  • Design implementation
  • Embedded programmable SoC technology
  • Secure authentication

 

Journal of Innovation

The Industrial Internet Consortium (IIC) has published the fifth edition of the Journal of Innovation with a focus on edge computing. The Journal of Innovation highlights the innovative ideas, approaches, products, and services emerging within the Industrial Internet, such as smart cities, artificial intelligence, the smart factory, and edge computing.

Edge computing promises to bring real-time intelligence to industrial machines at the edge of the network, where data can be processed closer to its source. Edge computing provides businesses with a cost-effective means to transmit and analyze large quantities of data in real-time, enabling them to reduce unplanned downtime, improve worker safety and enhance asset performance.

“The Journal of Innovation brings together innovators and thought leaders across the IoT spectrum. In this issue, our experts share their insights on edge computing as a key enabling technology poised to transform the IIoT,” said Mark Crawford, co-chair of the IIC Thought Leadership Task Group and Standards Strategist, SAP Strategic IP Initiatives. “Edge computing is not a new concept, but as IIoT transforms business processes, the need to use data closer to its source, whether that be from a wind turbine, a deep-water well’s blowout preventer, or an autonomous car, is paramount.”

The Edge Computing edition of the Journal of Innovation includes articles contributed by leaders at IIC member companies including:

  • Where is the Edge of the Edge of Industrial IoT? · Pieter van Schalkwyk XMPro
  • Device Ecosystem at the Edge – Manufacturing Scenario · Sujata Tilak, Ascent Intellimation Pvt. Ltd.
  • Edge Intelligence: The Central Cloud is Dead – Long Live the Edge Cloud · Yun Chao Hu, Huawei Technologies Duesseldorf GmbH
  • Outcomes, Insights, and Best Practices from IIC Testbeds: Microgrid Testbed · Brett Burger, National Instruments · Joseph Fontaine, Industrial Internet Consortium
  • A Knowledge Graph Driven Approach for Edge Analytics · Narendra Anand, Accenture Technology Labs · Colin Puri, Accenture Technology Labs
  • Industrial IoT Edge Architecture for Machine and Deep Learning · Chanchal Chatterjee, Teradata Inc. · Salim AbiEzzi, VMWare Inc.
  • A Practical and Theoretical Guide to Using the Industrial Internet Connectivity Framework · Stan Schneider, PhD. Real-Time Innovations, Inc. · Rajive Joshi, PhD. Real-Time Innovations, Inc.
Open Source IoT Platform EdgeX Foundry Adds Member

Open Source IoT Platform EdgeX Foundry Adds Member

Internet of Things platforms are all the rage these days. Seems like every company either has one or is building one. On the other hand, recent news about GE Digital’s Predix and discussions on LinkedIn have thrown a cautioning light on the efficacy of platforms.

When a technology supplier releases a platform the common thread is open connectivity to devices and closed, tightly integrated integration with the supplier’s products. Sometimes there is open connectivity with a variety of databases and analytics engines, but usually not.

A different take was begun by the Linux Foundation driven in the market by Dell Technologies. This take is open source and the drive has been to sign on as many technology companies as possible. Hence, today’s announcement. I have previously written about the EdgeX Foundry here and here.

EdgeX Foundry, an open source project building a common framework for Internet of Things (IoT) edge computing, announced Samsung Electronics Co., Ltd. has joined as a Platinum member. Participating in EdgeX Foundry will support Samsung’s emerging efforts in the industrial sector while expanding the market of EdgeX compatible components and devices.

“The true potential of IoT will be realized with solutions that cross both the consumer and industrial sectors. As one of the largest manufacturing companies in the world, having seamless IoT across our business domains and factories would streamline operations and drive efficiencies, but interoperability is a major challenge,” said Kyeongwoon Lee, Senior Vice President at Samsung Electronics. “EdgeX Foundry delivers the interoperability, flexibility and scalability that businesses need to deploy Industrial IoT solutions without hesitation, and it will enable us to create lightweight edge solutions that can support real-time operations for our manufacturing infrastructures.” 

EdgeX Foundry is a project of The Linux Foundation that is building an open interoperability framework hosted within a full hardware- and OS-agnostic reference software platform to enable an ecosystem of plug-and-play components that unifies the marketplace and accelerates the deployment of IoT solutions. Designed to run on any hardware or operating system and with any combination of application environments, EdgeX can quickly and easily deliver interoperability between connected devices, applications and services, across a wide range of use cases.

“Samsung is an active contributor in the open source community and has been a key driver behind IoT standardization supporting consumer devices and smart home technology,” said Philip DesAutels, PhD Senior Director of IoT at The Linux Foundation. “Their manufacturing experience combined with their expertise in consumer electronics, mobile devices and enterprise solutions will be essential to the development of the EdgeX Framework, and we are excited to welcome them into the community.”

EdgeX Foundry has rapidly grown to almost 60 members since its launch in April 2017 and is supported by an active community. More than 150 people from around the world joined EdgeX Foundry face-to-face meetings over the summer to align on project goals, develop working groups and discuss next steps for the project. EdgeX Foundry has also launched a series of technical training sessions called Tech Talks that are designed to help onboard new developers on to the project.

Follow

Follow this blog

Get every new post delivered right to your inbox.