Laser Micromachining Manufacturing Unveiled

As you add electronic sensing and control and networking to machinery, you can take a process to the next level. I’ve been impressed with the growing development of tighter tolerances and then better variety of materials for 3D printing (additive manufacturing). Here is an example of expanding the use of automated “subtractive” manufacturing—micro machining.

6-D Laser LLC was formed in 2018 as an affiliate of leading nanometer-level motion control specialist ALIO Industries, with the mission of integrating ultrafast laser processing with precision multi-axis motion systems. 6-D Laser offers Hybrid Hexapod-based laser micromachining systems for wide-range taper angle control, 5-Axis Laser Gimbal-based systems for laser processing 3D substrates, and unlimited field of view scanning solutions for laser processing large-format substrates.

Coming out of stealth mode and coinciding with its official launch in 2020, 6-D Laser has launched its website (www.6dlaser.com), and has also announced that the company will be showcasing its radical new approach to laser micro processing at the SPIE Photonics West event, booth 2149, 4-6 February in San Francisco, CA.

6D Laser’s central mission addresses limitations of existing laser processing systems which are largely due to sub-optimal positioning systems used by most system integrators. 6-D Laser tackles this problem by integrating ultra-fast laser material processing with the 6-D nanometer-level precision motion control solutions in which ALIO Industries specializes.

At the heart of 6-D Laser’s integrated ultrafast laser micromachining system is ALIO Industries’ Hybrid Hexapod, which takes a different approach to traditional 6 Degree of Freedom (6-DOF) positioning devices, and exhibits much higher performance at extremely competitive prices. Rather than 6 independent legs (and 12 connection joints) ALIO’s approach combines a precision XY monolithic stage, tripod, and continuous rotation theta-Z axis to provide superior overall performance.

The combination of serial and parallel kinematics at the heart of ALIO’s 6-D Nano Precision® is characterized by orders-of-magnitude improvements (when compared to traditional hexapods) in precision, path performance, speed, and stiffness. The Hybrid Hexapod® also has a larger work envelope than traditional hexapods with virtually unlimited XY travel and fully programmable tool center point locations. The Hybrid Hexapod® has less than 100 nm Point Precision® repeatability, in 3-dimensional space.

​6D Laser vertically integrates all of the sub-systems required for precision laser micro-processing, and it does this by forming strategic partnerships with key component and subsystem suppliers that are required to achieve the goals of demanding precision applications. In addition to its association with ALIO, 6-D Laser has also partnered with SCANLAB GmbH, which together with ACS Motion Control, has developed an unlimited field-of-view (UFOV) scanning solution for coordinate motion control of the galvo scanner and positioning stages called XLSCAN. 6-D Laser has also partnered with NextScanTechnology to provide high-throughput scanning systems that take advantage of the high rep-rates in currently available in ultrafast lasers, and Amplitude Laser, a key supplier of ultrafast laser systems for industrial applications.

Dr. Stephen R. Uhlhorn, CTO at 6-D Laser says, “Introducing an integrated ultrafast laser micromachining system that combines the positioning capabilities of the Hybrid Hexapod®, with high-speed optical scanning leads to a system that can process hard, transparent materials with wide-range taper angle control for the creation of high aspect ratio features in thick substrates, without limitations on the feature or field size.”

Ultrafast laser ablative processes, which remove material in a layer-by-layer process, result in machined features that have a significant side wall taper. For example, a desired cylindrical hole will have a conical profile. Taper formation is difficult to avoid in laser micromachining processes that are creating deep features (> 100 microns). Precision scanheads can create features with near-zero angle side walls, but they are limited to small angles of incidence (AOI) and small field sizes by the optics in the beamline.

Uhlhorn continues, “6-D Laser’s micromachining system controls the AOI and resulting wall taper angle through the Hybrid Hexapod® motion system, and the programmable tool center point allows for the control of the AOI over the entire galvo scan field, enabling the processing of large features.”

About 6-D Laser LLC
6D Laser, LLC, an affiliate of ALIO Industries, Inc, was founded in 2018 by C. William Hennessey and Dr. Stephen R. Uhlhorn. ALIO Industries is an industry-leading motion system supplier, specializing in nano-precision multi-axis solutions. 6D Laser was formed with the mission of integrating ultrafast laser processing with precision multi-axis motion systems, including ALIO’s Patented Hybrid Hexapod. The integration of ALIO True Nano motion systems with key sub-system suppliers, through strategic partnerships with Amplitude Laser, SCANLAB, and ACS Motion Control, enables a new level of precision and capability for advanced manufacturing.

www.6DLaser.com ​​​​​
www.microprm.com

Looking At Technology 2030 Compliments of Dell Technologies and IFTF

Looking At Technology 2030 Compliments of Dell Technologies and IFTF

Living with technology a decade from now. Dell Technologies and the Institute for the Future conducted an in-depth discussion with 20 experts to explore how various social and technological drivers will influence the next decade and, specifically, how emerging technologies will recast our society and the way we conduct business by the year 2030.

There is no universally agreed upon determination of which technologies are considered emerging. For the purpose of this study, IFTF explored the impact that Robotics, Artificial Intelligence (AI) and Machine Learning, Virtual Reality (VR) and Augmented Reality (AR), and Cloud Computing, will have on society by 2030. These technologies, enabled by significant advances in software, will underpin the formation of new human-machine partnerships, according to the IFTF.

Talk of digital transformation is virtually everywhere in Information Technology circles and Operations Technology circles. My long and varied experiences have often placed me at the boundaries where the two meet—and are now increasingly overlapping.

The take on robotics is right on target. And forget about all the SciFi scare stories that mainstream media loves to promote. The future is definitely all about human-machine partnership or collaboration. For example I often talk with EMTs about life in the rescue squad. These people are always in the gym. Our population in the US has gotten so large and obese that they often have to lift 300+ lb. people who haven’t the strength to help themselves up. Think about a robot assistant helping the EMT.

The AI discussion is also fraught with prominent people like Ray Kurzweil or Elon Musk giving dystopian SciFi views of the future. We are a long way from “intelligence.” Where we are is really the use of machine learning and neural networks that help machines (and us) learn by deciphering recurring patterns.

Back to the study, the authors state, “If we start to approach the next decade as one in which partnerships between humans and machines transcend our limitations and build on our strengths, we can begin to create a more favorable future for everyone.”

Jordan Howard, Social Good Strategist and Executive Director of GenYNot, sees tremendous promise for the future of human-machine partnerships: “Many of the complex issues facing society today are rooted in waste, inefficiency, and simply not knowing stuff, like how to stop certain genes from mutating. What if we could solve these problems by pairing up more closely with machines and using the mass of data they provide to make breakthroughs at speed? As a team, we can aim higher, dream bigger, and accomplish more.”

Liam Quinn, Dell Chief Technology Officer, likens the emerging technologies of today to the roll-out of electricity 100 years ago. Quinn argues that we no longer fixate on the “mechanics” or the “wonders” of electricity, yet it underpins almost everything we do in our lives. Similarly, Quinn argues, in the 2030s, today’s emerging technologies will underpin our daily lives. As Quinn provokes, “Imagine the creativity and outlook that’s possible from the vantage point these tools will provide: In 2030, it will be less about the wonderment of the tool itself and more about what that tool can do.”

By 2030, we will no longer revere the technologies that are emerging today. They will have long disappeared into the background conditions of everyday life. If we engage in the hard work of empowering human-machine partnerships to succeed, their impact on society will enrich us all.

Robots

While offshoring manufacturing jobs to low-cost economies can save up to 65% on labor costs, replacing human workers with robots can save up to 90% of these costs.

China is currently embarking upon an effort to fill its factories with advanced manufacturing robots, as workers’ wages rise and technology allows the industry to become more efficient. The province of Guangdong, the heartland of Chinese manufacturing, has promised to invest $154 billion in installing robots.

Buoyed by their commercial success, the adoption of robots will extend beyond manufacturing plants and the workplace. Family robots, caregiving robots, and civic robots will all become commonplace as deep learning improves robots’ abilities to empathize and reason. Google recently won a patent to build worker robots with personalities.

Artificial Intelligence and Machine Learning

Approximately 1,500 companies in North America alone are doing something related to AI today, which equates to less than 1% of all medium-to-large companies. We’re seeing this in the financial services industry already, with data recognition, pattern recognition, and predictive analytics being applied to huge data sets on a broad scale. In a 2015 report, Bank of America Merrill Lynch estimated that the AI market will expand to $153 billion over the next five years—$83 billion for robots, and $70 billion for artificial intelligence-based systems.

In addition to their ability to make decisions with imperfect information, machines are now able to learn from their experiences and share that learning with other AI programs and robots. But AI progress also brings new challenges. Discussions surrounding who or what has moral and ethical responsibility for decisions made by machines will only increase in importance over the next decade.

Virtual Reality and Augmented Reality

Although both Virtual and Augmented Reality are changing the form factor of computing, there is a simple distinction between the two. VR blocks out the physical world and transports the user to a simulated world, whereas AR creates a digital layer over the physical world.

Despite the difference, both technologies represent a fundamental shift in information presentation because they allow people to engage in what Toshi Hoo, Director of IFTF’s Emerging Media Lab, calls “experiential media” as opposed to representative media. No longer depending on one or two of our senses to process data, immersive technologies like AR and VR will enable people to apply multiple senses—sight, touch, hearing, and soon, taste and smell—to experience media through embodied cognition.

Over the next decade, Hoo forecasts that VR, combined with vast sensor networks and connected technologies, will be one of many tools that enable distributed presence and embodied cognition, allowing people to experience media with all their senses.

Cloud Computing

It’s important to recognize that Cloud Computing isn’t a place, it’s a way of doing IT. Whether public, private, or hybrid (a combination of private and public), the technology is now used by 70% of U.S. organizations. This figure is expected to grow further, with 56% of businesses surveyed saying they are working on transferring more IT operations to the cloud, according to IDG Enterprise’s 2016 Cloud Computing Executive Summary.

While the cloud is not a recent technological advancement, cloud technology only really gathered momentum in recent years, as enterprise grade applications hit the market, virtualization technologies matured, and businesses became increasingly aware of its benefits in terms of efficiency and profitability. Increasing innovation in cloud-native apps and their propensity to be built and deployed in quick cadence to offer greater agility, resilience, and portability across clouds will drive further uptake. Start-ups are starting to use cloud-native approaches to disrupt traditional industries; and by 2030, cloud technologies will be so embedded, memories from the pre-cloud era will feel positively archaic by comparison.

Human Machine Partnership

Recent conversations, reports, and articles about the intersection of emerging technologies and society have tended to promote one of two extreme perspectives about the future: the anxiety-driven issue of technological unemployment or the optimistic view of tech-enabled panaceas for all social and environmental ills.

Perhaps a more useful conversation would focus on what the new relationship between technology and society could look like, and what needs to be considered to prepare accordingly.

By framing the relationship between humans and machines as a partnership, we can begin to build capacity in machines to improve their understanding of humans, and in society and organizations, so that more of us are prepared to engage meaningfully with emerging technologies.

Digital (Orchestra) Conductors

Digital natives will lead the charge. By 2030, many will be savvy digital orchestra conductors, relying on their suite of personal technologies, including voice-enabled connected devices, wearables, and implantables; to infer intent from their patterns and relationships, and activate and deactivate resources accordingly.

Yet, as is often the case with any shift in society, there is a risk that some segments of the population will get left behind. Individuals will need to strengthen their ability to team up with machines to arrange the elements of their daily lives to produce optimal outcomes. Without empowering more to hone their digital conducting skills, the benefits that will come from offloading ‘life admin’ to machine partners will be limited to the digitally literate.

Work Chasing People

Human-machine partnerships will not only help automate and coordinate lives, they will also transform how organizations find talent, manage teams, deliver products and services, and support professional development. Human-machine partnerships won’t spell the end of human jobs, but work will be vastly different.

By 2030, expectations of work will reset and the landscape for organizations will be redrawn, as the process of finding work gets flipped on its head. As an extension of what is often referred to as the ‘gig economy’ today, organizations will begin to automate how they source work and teams, breaking up work into tasks, and seeking out the best talent for a task.

Instead of expecting workers to bear the brunt of finding work, work will compete for the best resource to complete the job. Reputation engines, data visualization, and smart analytics will make individuals’ skills and competencies searchable, and organizations will pursue the best talent for discrete work tasks.

Veterans, Women, Youth Featured at Rockwell Automation Event

Veterans, Women, Youth Featured at Rockwell Automation Event

Rockwell has had a strong training program for many years. I took my first week-long class in 1991 or 1992. Altogether I have taken about six classes—controls, PLCs, drives, motor control centers, software. I know how intense the training can be.

Last week I posted a podcast of thoughts from Rockwell Automation’s annual series of events held the week prior to Thanksgiving. Now I’m in Spain at yet another conference and trying to get caught up on posts before I start a flurry of posts from here.

So first—training, diversity, and education.

When the company showed off some graduates of its new Academy of Advanced Manufacturing and they talked about the intensity of the three month program, memories came back.

Veterans

ManpowerGroup and Rockwell Automation celebrated the first military veterans to graduate from the Academy of Advanced Manufacturing and secure high-paying jobs in the rapidly-evolving manufacturing industry.

The 12-week program launched in August combines classroom learning with hands-on laboratory experience. Veterans are trained in Rockwell Automation’s state-of-the art facility in Mayfield Heights, Ohio for in-demand jobs in advanced manufacturing. All of the graduates have job offers and more than half have multiple job offers that significantly increase — some graduates even doubling — their previous salaries.

“This program felt like it was made just for me,” says Travis Tolbert, U.S. Navy veteran and academy graduate. “It focused on controls and automation, which is something I’ve always wanted to do, but was never able to do until now. The academy helped me take my military skills and understand how I could make them relevant for jobs outside of the Navy.”

“In recognition of Veterans Day, on behalf of Rockwell and ManpowerGroup, we thank all our veterans for their service,” said Blake Moret, CEO of Rockwell Automation. “We are honored to recognize our first military veterans to graduate the Academy of Advanced Manufacturing. We’ve seen their unique combination of core work and tech-savvy skills evolve to successfully position them for careers in the industry. We’re confident this program will help solve a challenge critical to the growth of advanced manufacturing.”

If the accomplishments and future prospects of these veterans didn’t bring a tear or two, you had to have no feelings.

Women

Rockwell Automation has been announced as a 2017 Catalyst Award winner. The Catalyst Award honors innovative organizational approaches that address the recruitment, development and advancement of women and have led to proven, measurable results.

“We are thrilled to receive this recognition from Catalyst for our Culture of Inclusion journey, demonstrating our commitment to our employees, customers and community,” said Moret. “Our people are the foundation of our company’s success, and so we must create an environment where employees can and want to do their best work every day.”

The Culture of Inclusion journey began in 2007 with senior leaders renewing their commitment to diversity, inclusion and engagement. This was in response to employee data showing that women and people of color at the company had lower retention rates than white men, and there were gaps in the levels of representation for key demographics. A driving force of this strategy is the knowledge that in order to effect sustainable change, the dominant group—in this case, white men—must be aware of the impact of their privilege, be engaged, and partner with women and underrepresented groups in a meaningful way.

Results: Between 2008 and 2016, women’s representation in the U.S. increased from 11.9% to 23.5% among vice presidents, from 14.7% to 23.2% among directors, and from 19.3% to 24.3% at the middle-manager level. At the most senior leadership levels, women’s representation doubled, increasing from 11.1% to 25.0% among the CEO’s direct reports and from 11.1% to 20.0% on the board of directors. In addition, the Rockwell Automation voluntary turnover is well below the benchmark average for women.

Youth

On the Automation Fair show floor, Jay Flores, Rockwell Automation global STEM ambassador, led me on a tour of the FIRST Robotics area and explained how Rockwell is continuing its commitment to the program.

It announced a $12M, four-year commitment to FIRST—For Inspiration and Recognition of Science and Technology—founded to inspire young people’s interest and participation in science and technology.

Over the past 10 years, Rockwell Automation has provided more than $15M of broad-based support to address the critical need to fill science, technology, engineering and math (STEM) jobs that drive innovation. Many of these jobs go unfilled because of both the lack of awareness of the kinds of high-tech jobs available and the lack of skills to qualify for today’s needs.

“Through our technology and people, we are helping to inspire the next generation of innovators to fill the talent pipeline for our customers and for our company,” said Moret. “Our strategic partnership with FIRST helps us increase our reach and visibility to STEM students around the world.”

In addition to being a global sponsor of the FIRST LEGO League program and sole sponsor of the FIRST Robotics Competition (FRC) Rockwell Automation Innovation in Control Award, nearly 200 Rockwell Automation employees around the world donate their time for the FIRST programs, and more than 300 employees volunteer for the organization in other capacities. The company also donates products integral to FIRST program games and scoring. These product donations are specifically used for the FIRST Robotics Competition playing fields and scoring systems, and they are included within the parts kits teams use to build their robots.

“This generous, multiyear commitment from Rockwell Automation will allow us to focus on the strategic aspects of our partnership while continuing to help scale our programs and expose students to a broader range of industry-leading products and applications,” said Donald E. Bossi, president, FIRST. “The company has a long, rich history of supporting FIRST.”

New Factory Jobs Coming To America–Maybe

New Factory Jobs Coming To America–Maybe

We keep touting manufacturing jobs in America. An electronics assembly company has announced another plant in the US. When a process automation company lands a contract with a customer, it sends a press release touting the fact. But in process industries, the amount of the contract can be significant.

I seldom see one in discrete manufacturing.

On the heels of the Taiwanese manufacturer known as Foxconn announcing plans to perhaps build an assembly plant in Wisconsin, local automation supplier Rockwell Automation announces a partnership.

Main Point: This may be the most significant release I’ve ever seen from Rockwell. Not in terms of business value. Read this carefully and tell me where there is a product mentioned! This encompasses two things–one is workforce development and training. The second thing is a strategy. Sure, there will be products involved probably. But Connected Enterprise sounds more strategic, more consultative. This is decidedly not one of those things where we’ll cut you a deal if you buy 5,000 PLCs.

Maybe I’m reading too much into it, but I’m thinking this signals a direction shift under new CEO Blake Moret. Could be interesting times.

Downside: However, my research on Foxconn and America reveals a pattern of big announcements followed by little activity. For the people of rural Wisconsin, I hope this time they follow through.

News: Hon Hai Precision Industry Co. Ltd., also known as Foxconn, and Rockwell Automation announced July 28, 2017, that they are collaborating to implement Connected Enterprise and Industrial Internet of Things (IIoT) concepts for smart manufacturing in Foxconn’s new U.S. facilities.

The companies will also collaborate to develop and apply Smart Manufacturing solutions at Foxconn’s global electronics assembly operations and within the related industry ecosystem. Technologies and extensive domain expertise of both companies will be combined to deliver a state-of-the-art manufacturing system with unparalleled levels of operational efficiency.

Terry Guo, Foxconn chairman and CEO, said, “I am very excited about the opportunity for Foxconn and Rockwell Automation to work together. Foxconn is the global leader in electronics design manufacturing, and Rockwell Automation is the world’s largest company dedicated to industrial automation and information. I am confident that together we will increase operational efficiencies in electronics manufacturing to new levels, achieving the vision of Smart Manufacturing and Made in China 2025.”

The companies will also work together on workforce development and training. Specifically, as Foxconn increases its employee base in the United States, it has committed to participate in the previously announced program developed by Rockwell Automation and ManpowerGroup to upskill military veterans and create a pool of certified talent for in-demand advanced manufacturing roles across the United States.

Blake Moret, Rockwell Automation president and CEO added, “We are excited about the opportunity to work with a global technology and manufacturing leader to deliver advanced IIoT solutions to the electronics manufacturing industry. Our work with Foxconn will further demonstrate the power and broad applicability of The Connected Enterprise. We are also pleased that Foxconn shares our commitment to expanding and upskilling the U.S. workforce to ensure there is the necessary talent for advanced manufacturing roles.”

 

Manufacturing Jobs In America-Part 2

Manufacturing Jobs In America-Part 2

Mobile Workers in Production PlantManufacturing jobs—will they be people or robots? Whenever I am presented with an either/or I tend to think why not both or neither. Four choices, not two. In this case, three choices since neither means no manufacturing. And every country on God’s good Earth wants manufacturing. Just check out all the government initiatives underway.

Within the past week, I’ve seen two articles in local newspapers—The Sidney Daily News and The Dayton Daily News—parroting the New York Times article about how robots take jobs away from people.

This week was the biennial edition of Automate—the trade show of Association for Advancing Automation (A3). A3 released a white paper for the show, and I had a chance to sit with two association executives, Bob Doyle and Alex Shikany, to discuss the findings and analysis leading up to the white paper Work in the Automation Age: Sustainable Careers Today and Into the Future.

“As a representative of over 1,000 companies and organizations making up the automation ecosystem, A3 believes it is critically important to clear up some of the confusion surrounding the relationship between automation and jobs,” said Jeff Burnstein, A3 president quoted in the press release. An admirable goal.

My take is that I agree with pretty much everything they found with one addition—I still believe that manufacturing enterprise executives bear much blame for problems with manufacturing in America. Such things as management-by-spreadsheet, no passion for products or customers, faddish reactions (such as unintelligent offshoring), and lack of investment.

Technology Makes Lives Better

We discussed that humans have been developing technology to increase production and make lives better probably since there were humans on earth. Recent discussions that cover only the past 250 years or so with technology advancing from steam to electricity to IT-driven human prosperity and quality of life have all advanced.

Let’s look at a summary of findings. Here are some surprising facts.

Manufacturing Jobs

More robots, more jobs.

As employers add automation technologies such as robots, job titles and tasks are changing, but the number of jobs continues to rise. New technologies allow companies to become more productive and create higher quality products in a safer environment for their employees. This allows them to be more competitive in the global marketplace and grow their business. We see this in the statistics: over the seven-year period from 2010 to 2016, 136,748 robots were shipped to US customers—the most in any seven-year period in the US robotics industry. In that same time period, manufacturing employment increased by 894,000 and the US unemployment rate decreased from 9.8% in 2010 to 4.7% in 2016.

Specifically looking at two companies, Amazon had more than 45,000 employees when it introduced robots in 2014. While the company continues to add robots to its operations, it has grown to over 90,000 employees, with a drive to hire more than 100,000 new people by the end of 2018. Similarly, General Motors grew from 80,000 US employees in 2012 to 105,000 in 2016, while increasing the number of new US robot applications by about 10,000. We see similar results from multi-national companies with thousands of employees, to small manufacturing companies.

The skills gap and its impact.

Skilled workers are key to companies’ success and countries’ economic development. Employers rank the availability of highly skilled workers who facilitate a shift toward innovation and advanced manufacturing as the most critical driver of global competitiveness. But studies show an increasing skills gap with as many as two million jobs going unfilled in the manufacturing industry alone in the next decade. Fully 80% of manufacturers report a shortage of qualified applicants for skilled production positions, and the shortage could cost US manufacturers 11% of their annual earnings.

Changing job titles reflect changing tasks.

In the automation age, as in the computer age before it, job titles shift to reflect the impact of technology. A recent study concluded that occupations that have 10% more new job titles grow 5% faster. Just as we saw the rise of entire industries around previously unheard-of job titles in cloud services, mobile apps, social media, and more, we’re seeing similar shifts in the automation age. As lower-level tasks are automated with advanced technologies such as robots, new job titles and industries arise across nearly every economic sector.

Supply and demand and wages.

In the manufacturing industry, which is the largest user of automation today, the skills gap is driving up what are already strong wages and benefits, well over the US average. In 2015, manufacturing workers earned $81,289 including pay and benefits compared to $63,830 for the average worker in all nonfarm industries. And 92% of manufacturing workers were eligible for health insurance benefits. Despite that, manufacturing executives reported an average of 94 days to recruit engineering and research employees and 70 days to recruit skilled production workers.

Bridging the skills gap with innovative training.

Automation age jobs range from well-paying, entry-level and blue-collar positions through engineers and scientists. Stable automation-age manufacturing jobs can start at $20 per hour with just a high school diploma, a few months of automation training, and professional certification. Employers, vocational schools, and universities are offering innovative training approaches that give workers alternatives to the traditional (and expensive) high-school-to-college-to-job route. And employers such as GM are revitalizing apprenticeships, recognizing the significant advantage those programs offer.

Summary

Consider this equation

Automation –> Increased Productivity –> Improved Competitive Position –> Company Growth –> More Jobs