Acquisitions Bolster Incumbents Further Consolidate Industry

Acquisitions Bolster Incumbents Further Consolidate Industry

The IT architecture of industrial / manufacturing applications increasingly boosts the role of cloud and edge. These technologies have become core to Industrial Internet of Things (IIoT) and improved Software as a Service (SaaS).

These recent acquisition news items reflect the acceleration of the trend. One is from Siemens and the other PTC.

Siemens plans acquisition of Edge technology

In brief:

  • Siemens further expands its digitalization portfolio for industry
  • Technology basis is the Docker IT standard
  • Siemens Industrial Edge ecosystem enables easy and flexible use of Edge apps

Siemens is planning the acquisition of Edge technology from the US company Pixeom. With this action, Siemens is strengthening its Industrial Edge portfolio by adding software components for Edge runtime and for device management. Siemens Industrial Edge provides an ecosystem, which enables the flexible provision and use of apps. This means for example that appropriate apps can analyze data locally at the machine and send relevant data to the higher-level Industrial Edge Management System for global analytics. With this acquisition, Siemens is driving forward the expansion of its Digital Enterprise portfolio and the integration of cutting-edge technologies for the digital transformation of industry.

With the resulting Industrial Edge ecosystem, industrial companies can use production data even more efficiently and react more flexibly to changes in conditions.

Ralf-Michael Franke, CEO of Siemens’ Factory Automation Business Unit, explains: “Cutting edge technologies such as Edge Computing open up new scope for automation. With Siemens Industrial Edge, we are creating an open edge ecosystem which offers benefits for companies of any size.”

Siemens is using Docker standard container technology: the provision of apps in the management system will therefore be just as simple as functional upgrades and updates of Edge devices in the factory from a central point.

Siemens intends to acquire this technology from Pixeom and use it in the Factory Automation Business Unit, which is part of Siemens Digital Industries. Pixeom has sites in San José, California and Udaipur, India and employs 81 people worldwide. Closing of the transaction is planned for the fourth quarter of 2019. Both companies have agreed not to comment on the financial details of the transaction.

PTC Makes SaaS Acquisition

I sat in on the analysts/press conference where PTC president and CEO Jim Heppelmann discussed the reason for this announced acquisition of Onshape, creators of the “first” Software as a Service product development platform. The company had also just released fourth quarter results. PTC has a little more than $1 billion in revenues, with about 45% CAD and 35% PLM. Interestingly, the IoT business contributes just over 10% of revenues.

Onshape’s product development platform unites computer aided design (CAD) with data management and collaboration tools, for approximately $470 million, net of cash acquired. The acquisition is expected to accelerate PTC’s ability to attract new customers with a SaaS-based product offering and position the company to capitalize on the inevitable industry transition to SaaS. Heppelmann believes that that cloud-based SaaS is the future of CAD. Pending regulatory approval and satisfaction of other closing conditions, the transaction is expected to be completed in November 2019.

Located in Cambridge, MA, Onshape was founded in 2012 by CAD pioneers and tech legends, including Jon Hirschtick, John McEleney, and Dave Corcoran, inventors and former executives of SolidWorks. Onshape has secured more than $150 million in funding from leading venture capital firms and has more than 5,000 subscribers around the world. The company’s software offering is delivered in a SaaS model, making it accessible from any connected location or device, eliminating the need for costly hardware and administrative staff to maintain. Distributed and mobile teams of designers, engineers, and others can benefit from the product’s cloud nature, enabling them to improve collaboration and to dramatically reduce the time needed to bring new products to market – while simultaneously staying current with the latest software.

“PTC has earned a reputation for successfully pursuing new innovations that drive corporate growth,” said Heppelmann. “Building on the strong momentum we have with our on-premises CAD and PLM businesses, we look to our future and see a new growth play with SaaS.”

This acquisition is the logical next step in PTC’s overall evolution to a recurring revenue business model, the first step of which was the company’s successful transition to subscription licensing, completed in January 2019. The SaaS model, while nascent in the CAD and PLM market, is rapidly becoming industry best practice across most other software domains.

“Today, we see small and medium-sized CAD customers in the high-growth part of the CAD market shifting their interest toward SaaS delivery models, and we expect interest from larger customers to grow over time,” continued Heppelmann. “The acquisition of Onshape complements our on-premises business with the industry’s only proven, scalable pure SaaS platform, which we expect will open new CAD and PLM growth opportunities while positioning PTC to be the leader as the market transitions toward the SaaS model.”

For customers, the SaaS model enables faster work, improved collaboration and innovation, with lower up-front costs and with no IT infrastructure to administer and maintain. For software providers, the SaaS model has been proven to generate a more stable and predictable revenue stream, increase customer loyalty as customers benefit from earlier adoption of technology innovations, and enable expansions into new segments and geographies.

“At Onshape, we share PTC’s vision for helping organizations transform the way they develop products,” said Jon Hirschtick, CEO and co-founder, Onshape. “We and PTC believe that the product development industry is nearing the ‘tipping point’ for SaaS adoption of CAD and data management tools. We look forward to empowering the customers we serve with the latest innovations to improve their competitive positions.”

Onshape will operate as a business unit within PTC, with current management reporting directly to Heppelmann.

Schneider Electric Foxboro and Triconex Innovation Days 2019

Schneider Electric Foxboro and Triconex Innovation Days 2019

I’ve followed Foxboro and Triconex for many years now in my coverage of the process automation business. A great company that, not unlike too many others, suffered now and again with very poor management. The company has now settled in nicely at its home in Schneider Electric and appears to be healthy here.

Much credit must go to Gary Freburger. He provided a steadying hand as the leader before and through the transition, as well as guiding the integration into the new home. He is retiring at the end of the year. I’ve met a number of great leaders and a few stinkers in my 20 years at this side of the business. Gary’s one of the great ones. And his chosen successor (see more below) seems more than up for the task of building on his successes.

Marcotte Succeeds Freburger as Process Automation President

This week’s major announcement revealed that Nathalie Marcotte has been selected to succeed Freburger as president of its Process Automation business, effective Jan. 1, 2020.

Nathalie Marcotte Official Picture  jpg

“After a long, successful industry career, including more than 15 years serving Invensys and Schneider Electric in various senior leadership roles, Gary has decided to retire,” said Peter Herweck, executive vice president, Industrial Automation business, Schneider Electric. “We thank him for his many contributions and his strong legacy of success. We wish him well, and I congratulate Nathalie on her appointment. She brings more than 30 years of industry knowledge, expertise and experience, as well as a long record of success. I look forward to working with her as we build on the success Gary has delivered.”

Since joining the Schneider organization in 1996, Marcotte has held several positions of increasing responsibility, including vice president of Global Performance and Consulting Services; vice president, North America marketing; general manager for the Canadian business; and, prior to her current position, vice president, marketing, Global Systems business. As the company’s current senior vice president, Industrial Automation Services, she is responsible for Schneider Electric’s Services business and offer development, ranging from product support to advanced operations and digital services. She is also responsible for the company’s Global Cybersecurity Services & Solutions business, including the Product Security Office.

“As we move through this transition, it will be business as usual for Schneider Electric and our Process Automation customers,” Marcotte said. “Gary and I are working very closely together to ensure there will be no disruptions to our day-to-day operations. This ensures our customers have the same access to the exceptional people, products and technology they have come to trust and rely on to improve the real-time safety, reliability, efficiency and profitability of their operations.”

“I thank Gary for his many contributions to Schneider Electric and to our industry in general. Under his leadership, our customers, partners and employees have never been better situated to succeed, today and tomorrow,” Marcotte said. “This transition will have no impact on our technology strategy and portfolio roadmap. We remain committed to our continuously-current philosophy, which means never leaving our customers behind. Now, by leveraging the strength of the full Schneider Electric offer, we can take the next step toward enabling an easier, less costly digital transformation for our customers, while keeping them on the path to a safer, more secure and profitable future.”

Following the opening keynotes, I had the opportunity to chat privately with Freburger and Marcotte. Following summarizes a few key takeaways.

Digitalization and Digital Transformation.

These topics were prominently displayed in the ballroom before the keynotes. In fact the welcome and opening presentation were given by Mike Martinez, Director of Digital Transformation Consulting. These are common themes in the industry—in fact, not only process automation, but also at the IT conferences I cover. Each company has its own unique take on the terms, but it still boils down to data, data integrity, databases, and data security. All of which were discussed.

Key Points From the Presidents.

Integration across Schneider Electric. One priority has been working with other business units (and their technologies) across the Schneider Electric portfolio. This could be PLCs and drives, but power is a huge emphasis. Schneider Electric management wants very much for its process automation acquisition to integrate well with its historic electric power business. This is seen as a strategic opportunity. One thought-provoking observation—is the process engineer/electrical engineer divide as serious as the IT/OT divide? No direct answer. But these domains have historically had little to no collaboration. One to watch.

Close working relationship with AVEVA. If you recall, Schneider Electric bundled its various software acquisitions including the ones from Invensys (Wonderware, Avantis) and used them to buy into AVEVA—the engineering software company. Bringing automation and software together was a constant source of pain for Invensys. Schneider Electric dealt with it through a separate company. Along the way, cooperation seems to be better than ever. Marcotte explained to me that Foxboro combines its domain expertise with the more broadly general software platforms to achieve customer values. See for example my previous post on Plant Performance Advisors Suite.

Cybersecurity.  Marcotte has been leading Schneider’s cybersecurity efforts. These are seen as a key part of Schneider Electric’s offer. See especially the establishment of the ISA Global Cybersecurity Alliance. They don’t talk as much about Internet of Things as at other conferences, when I probed more deeply about IT, cybersecurity was again brought up as the key IT/OT collaboration driver.

It’s been a struggle, but the Schneider Electric process automation business (Foxboro and Triconex) seems as strong as ever. And the people here—both internal and customers—are optimistic and energetic. That’s good to see.

Acquisitions Bolster Incumbents Further Consolidate Industry

How To Avoid Pilot Purgatory For Your Projects

This is still more followup from Emerson Global Users Exchange relative to sessions on Projects Pilot Purgatory. I thought I had already written this, but just discovered it languishing in my drafts folder. While in Nashville, I ran into Jonas Berge, senior director, applied technology for Plantweb at Emerson Automation. He has been a source for technology updates for years. We followed up a brief conversation with a flurry of emails where he updated me on some presentations.

One important topic centered on IoT projects—actually applicable to other types of projects as well. He told me the secret sauce is to start small. “A World Economic Forum white paper on the fourth industrial revolution in collaboration with McKinsey suggests that to avoid getting stuck in prolonged “pilot purgatory” plants shall start small with multiple projects – just like we spoke about at EGUE and just like Denka and Chevron Oronite and others have done,” he told me.

“I personally believe the problem is when plants get advice to take a ‘big bang’ approach starting by spending years and millions on an additional ‘single software platform’ or data lake and hiring a data science team even before the first use case is tackled,” said Berge. “My blog post explains this approach to avoiding pilot purgatory in greater detail.”

I recommend visiting Berge’s blog for more detail, but I’ll provide some teaser ideas here.

First he recommends

  • Think Big
  • Start Small
  • Scale Fast

Scale Fast

Plants must scale digital transformation across the entire site to fully enjoy the safety benefits like fewer incidents, faster incident response time, reduced instances of non-compliance, as well as reliability benefits such as greater availability, reduced maintenance cost, extend equipment life, greater integrity (fewer instances of loss of containment), shorter turnarounds, and longer between turnarounds. The same holds true for energy benefits like lower energy consumption, cost, and reduced emissions and carbon footprint, as well as production benefits like reduced off-spec product (higher quality/yield), greater throughput, greater flexibility (feedstock use, and products/grades), reduced operations cost, and shorter lead-time.

Start Small

The organization can only absorb so much change at any one time. If too many changes are introduced in one go, the digitalization will stall:

  • Too many technologies at once
  • Too many data aggregation layers
  • Too many custom applications
  • Too many new roles
  • Too many vendors

Multiple Phased Projects

McKinsey research shows plants successfully scaling digital transformation instead run smaller digitalization projects; multiple small projects across the functional areas. This matches what I have personally seen in projects I have worked on.

From what I can tell it is plants that attempt a big bang approach with many digital technologies at once that struggle to scale. There are forces that encourage companies to try to achieve sweeping changes to go digital, which can lead to counterproductive overreaching. 

The Boston Consulting Group (BCG) suggests a disciplined phased approach rather than attempting to boil the ocean. I have seen plants focus on a technology that can digitally transform and help multiple functional areas with common infrastructure. A good example is wireless sensor networks. Deploying wireless sensor networks in turn enables many small projects that help many departments digitally transform the way they work. The infrastructure for one technology can be deployed relatively quickly after which many small projects are executed in phases.

Small projects are low-risk. A small trial of a solution in one plant unit finishes fast. After a quick success, then scale it to the full plant area, and then scale to the entire plant. Then the team can move on to start the next pilot project. This way plants move from PoC to full-scale plant-wide implementation at speed. For large organization with multiple plants, innovations often emerge at an individual plant, then gets replicated at other sites, rolled out nation-wide and globally.

Use Existing Platform

I have also seen big bang approach where plant pours a lot of money and resources into an additional “single software platform” layer for data aggregation before the first use-case even gets started. This new data aggregation platform layer is meant to be added above the ERP with the intention to collect data from the ERP and plant historian before making it available to analytics through proprietary API requiring custom programming. 

Instead, successful plants start small projects using the existing data aggregation platform; the plant historian. The historian can be scaled with additional tags as needed. This way a project can be implemented within two weeks, with the pilot running an additional three months, at low-risk. 

Think Big
I personally like to add you must also think of the bigger vision. A plant cannot run multiple small projects in isolation resulting in siloed solutions. Plants successful with digital transformation early on establish a vision of what the end goal looks like. Based on this they can select the technologies and architecture to build the infrastructure that supports this end goal.
NAMUR Open Architecture (NOA)
The system architecture for the digital operational infrastructure (DOI) is important. The wrong architecture leads to delays and inability to scale. NAMUR (User Association of Automation Technology in Process Industries) has defined the NAMUR Open Architecture (NOA) to enable Industry 4.0. I have found that plants that have deployed digital operational infrastructure (DOI) modelled on the same principles as NOA are able to pilot and scale very fast. Flying StartThe I&C department in plants can accelerate digital transformation to achieve operational excellence and top quartile performance by remembering Think Big, Start Small, Scale Fast. These translate into a few simple design principles:

  • Phased approach
  • Architecture modeled on the NAMUR Open Architecture
  • Ready-made apps
  • East-to-use software
  • Digital ecosystem
GE Digital Updates IIoT Software

GE Digital Updates IIoT Software

I guess I did attend the last GE software conference Minds + Machines. However, the reconstituted and independent GE Digital recently held a user conference where it announced a number of upgrades to its IIoT software. These are firmly within the current trends of connecting and mobility.

The product updates include:

  • Predix Essentials, which makes it easier for industrial companies to connect, visualize and analyze their data
  • Asset Answers, which helps customers to understand the competitive potential of Asset Performance Management (APM) software
  • Webspace 6.0, a new HTML5 interface that seamlessly brings automation data to operators across any mobile device

Edge-to-Cloud Accessibility

Predix Essentials is an easy-to-use SaaS solution, helping companies connect to disparate data sources, monitor operations, and leverage edge-to-cloud predictive analytics–reducing time-to-value for operational teams looking to reduce waste, lower costs, and increase performance.

Developed in partnership with a number of customers, including silicon chip manufacturer Intel, Predix Essentials is a natural first step for industrial businesses looking to leverage the power of cloud-based Industrial IoT technologies, providing the connectivity, visualization and analysis capabilities that are the cornerstones of a digital transformation journey, regardless of vertical or maturity.

Suitable for industrial companies of all kinds, Predix Essentials is also the foundation of GE Digital’s APM and OPM application suites, providing core functionality and bridging the entire software portfolio by connecting GE Digital cloud-based solutions to on-premises data from its Automation, MES and Historian solutions.

Identifying Maintenance Strategies

Asset Answers is a benchmarking tool that helps customers quickly import and assess data to better understand how their asset maintenance compares with similar companies in their particular domain, or even against their own internal performance across sites.

With this intelligence, customers can determine where best to invest in updating maintenance regimes or capabilities, and ultimately provide a seamless path to products like APM to manage and optimize assets across their business. Asset Answers is available for many sectors, including power generation, oil and gas and chemicals.

Improving Operator Mobility

Webspace 6.0, a web and mobility solution, brings the full visualization and control capabilities from GE’s iFIX and CIMPLICITY HMI/SCADA software seamlessly across devices, including smartwatches, phones, tablets and desktops.

Offering enhanced encryption and new zero-install HTML5 client, Webspace 6.0 improves the way that operators receive and react to operational insights, whether they are in the field, on the plant floor or at a desk, providing them the flexibility to make informed decisions and share their expertise, regardless of location. By dynamically extending automation solutions, Webspace 6.0 increases information sharing across teams, speeds the right operator actions, and improves agility with real-time visualization and control anywhere, anytime.

Availability

“GE Digital continues to release innovations that forge the way for industrial customers working on transforming their operations,” said Pat Byrne, CEO of GE Digital. “By continuing to invest across our portfolio of industrial software, and by making it easier than ever for our customers to unlock the power of the Industrial IoT, GE Digital is strengthening its customers’ ability to become more productive, efficient and safe.”

Predix Essentials, Asset Answers and Webspace 6.0 are generally available today as part of GE Digital’s portfolio of industrial software products covering HMI/SCADA, Historian, Asset Performance Management and Manufacturing Execution System applications. Today’s announcements build on a strong thread of recent investments in product innovations, all designed to solve a broad range of industrial customer challenges, including iFIX 6.0; Historian 7.2, Plant Applications 8.0 and Predix Manufacturing Data Cloud for the manufacturing sector; Grid Analytics for the power transmission and distribution market; and APM Integrity’s Compliance Management for the O&G and Power Generation industries.

Acquisitions Bolster Incumbents Further Consolidate Industry

Presentation Skills for Career Success–Emerson Exchange

Presentations abound at Emerson Global Users Exchange. Attendees can choose to take deep technical dives into Emerson products, get overviews and trends of technology and the industry, and even personal development. Yes, there was even a 6 am fitness time with either running or Yoga.

Where’s “The Edge”? Yes, you can use good presentation skills for career success. Building Your Personal Brand through Digital Transformation–or social media an networking. Here’s a recap of the 2019 Emerson Global Users Exchange based upon several sessions I attended led by people I’ve known for a long time–Dave Imming, Mike Boudreaux, and Jim Cahill.

Presentation Skills for Career Success

Dave Imming, VP for QC at Emerson presented (well) about making good presentations as essential for career success.

First off–It’s important. Even in your first years as an engineer, you may be presenting ideas to management or even presenting at conferences. These help you become recognized and show your knowledge and ambition.

There are three steps to developing and presenting.

First, you must create a story. I’d emphasize even in a technical presentation making it flow. As you create your story, first you must determine the objective of the presentation. What are you trying to convey? Note: do this with pen and paper. Don’t create slides, yet. Next determine your audience. You must have a clear idea of whom your are talking to. The presentation will be different for your engineering team and for management. Hint: don’t create slides, yet. Now, determine your Key Points. [When I prepare, I use PostIt Notes so I can arrange them easily. Hint: stay away from the computer and don’t create slides, yet. Now you can construct your Story Line. How are you going to develop your ideas. [This is where I arrange and rearrange the PostIt Notes.] Oh, yes, don’t create slides, yet. You can research the Rule of 3 or 7 basic plot lines to help. Now Outline  and still don’t create slides. FINALLY create your slides. Do not use text heavy or dense charts. Text should be 30 point. Find interesting and illustrative pictures with maybe a few words superimposed.

Refine and Rehearse—Do this verbally, aloud, several times. First with yourself several times, then to a friend

Stand and deliver—Most important is to have confidence, even while experiencing normal nervousness. Preparation breeds confidence. If you know the key points per slide-especially the first few to get into the groove-then your confidence will grow. Move with intention, do not pace like a caged animal. Make eye contact with one audience member at a time and hold for at least 5 seconds. That establishes connection with the audience.

Follow this blog

Get a weekly email of all new posts.