OPC UA Popular at Iconics Customer Conference

OPC UA Popular at Iconics Customer Conference

Iconics has been a long-time supporter of OPC Foundation and an early adopter of OPC UA. President Russ Agrusa has seen the power and benefits of OPC as an information model for open interchange of data among industrial automation devices.

Thomas Burke, president of the OPC Foundation presented a keynote on the technology and benefits of OPC UA and the status of working with a variety of protocols such as Time Sensitive Networking, MQTT, AMQP, and others. I have written a white paper on TSN and OPC that you can download here.

The company provides advanced web-enabled OPC UA certified visualization, analytics, and mobile software solutions for any energy, manufacturing, industrial or building automation application. OPC is obviously a popular topic with Iconics developers as revealed by the packed session and probing questions.

“Connected Intelligence is our theme at this year’s customer summit and it all about connectivity to every “thing” in the Industrial Internet of Things (IIoT), which is critical for today’s manufacturing, industrial, and building automation systems. The OPC Unified Architecture (OPC UA) is the core standard for Industry 4.0 and IIoT. ICONICS works closely with the OPC Foundation and its technical committees to help create new standards that have applications in many industries.

“As a member of the OPC Board of Directors, I am proud to promote its many specifications and wide-reaching standards for manufacturing, industrial, and building automation,” says Russ Agrusa, President and CEO of ICONICS.

“I have presented at many ICONICS Worldwide Customer Summits over the years and I find meeting the wide variety of ICONICS customers, partners, and integrators from around the world to be rewarding. ICONICS early support and extensive commitment to OPC for over 20 years has helped propel OPC to where it is today,” says Thomas Burke, President of the OPC Foundation.

The ICONICS community of partners, system integrators and customers will learn from top industry experts how the OPC Foundation is driving the next wave of solutions for Industry 4.0 and the Industrial Internet of Things.

Takeaway: OPC UA has been recognized as an essential standard by Industie 4.0 in Germany and is a central technology for industrial data communication for software applications such as Iconics.

Data, Devices, Visualization Headline Iconics User Event

Data, Devices, Visualization Headline Iconics User Event

Gathering data, visualization on many devices and screens, and connecting with standards including OPC UA and BACnet attracted a crowd of developers and users to the Iconics World Wide Customer Conference this week in Providence, RI.

“Connected Intelligence is our theme at this year’s summit and it has a dual meaning for us,” said Russ Agrusa, President and CEO of Iconics. “First, it refers to our extensive suite of automation software itself and how it provides out-of-the-box solutions for visualization, mobility, historical data collection, analytics and IIoT. The second point is that Iconics, over the last 30 years, has built a community of partners and customers who will have the opportunity to meet our software designers and other employees and have one-on-one discussions on such topics as; Industry 4.0, IIoT, cloud computing, artificial intelligence (AI) and the latest advances in automation software technology. It is truly a high energy and exciting event.”

Key technologies showcased at the Iconics Connected Intelligence Customer Summit included:

1. Industry 4.0 and the Industrial Internet of Things

2. Unlocking data and making the invisible, visible

3. Secure strategies and practices for industrial, manufacturing and building automation

4. Predictive AnalytiX using expert systems such as FDD and AI Machine Learning

5. Hot, warm and cold data storage with plant historians for the cloud and IIoT

Integration With AR, VR, and Mixed Reality Tech

The recent v10.95 release of GENESIS64 HMI/SCADA and building automation suite includes 3D holographic machine interface (HMI), which can be used with Microsoft’s HoloLens self-contained holographic computing device. This combination of Iconics software with Microsoft hardware allows users to visualize real-time data and analytics KPIs in both 2D and 3D holograms. When combined with Iconics AnalytiX software, users can take advantage of additional fault detection and diagnostics (FDD) and Hyper Historian data historian benefits, providing needed “on the spot” information in a hands-free manner.

“These new hands-free and mixed reality devices enable our customers and partners to ‘make the invisible visible’,” said Russ Agrusa, President and CEO of ICONICS. “There is a massive amount of information and value in all that collected and real-time data. Data is the new currency and we make it very easy to uncover this untapped information. We welcome this year’s summit attendees to get a glimpse at the future of HMI wearable devices such as Microsoft’s HoloLens and RealWear HMT1, HP and Lenovo Virtual reality devices.”

Mobile-Head-mounted tablet-style device

The V10.95 release of GENESIS64 HMI/SCADA and building automation suite includes Any Glass technology, which can be used with self-contained head-wearable computing devices. HMT-1 from RealWear demonstrated the visualization of real-time and historical data KPIs with voice driven, hands-free usage.

Featuring an intuitive, completely hands-free interface, the RealWear HMT-1 is a rugged head-worn solution for industrial IoT data visualization, remote video collaboration, technical documentation, assembly and maintenance instructions and streamlined inspections right to the eyes and ears of workers in harsh and loud field and manufacturing environments.

Support for multiple OSs and devices

Iconics has always been Microsoft Windows application and will continue to do so. However, IoTWorX Industrial Internet of Things (IIoT) software automation suite includes support for multiple operating systems including Windows 10 IoT Enterprise and Windows 10 IoT Core, as well as a large variety of Linux embedded operating systems including Ubuntu and Raspbian.

Users can connect to virtually any automation equipment through supported industry protocols such as BACnet, SNMP, Modbus, OPC UA, and classic OPC Tunneling. Iconics’ IoT solution takes advantage of Microsoft Azure cloud services to provide global visibility, scalability, and reliability. Optional Microsoft Azure services such as Power BI and Machine Learning can also be integrated to provide greater depth of analysis.

The following Operating systems are currently being certified for IoTWorX:

• Windows 10 IoT Enterprise

• Windows 10 IoT Core

• Red Hat Enterprise Linux 7

• Ubuntu 17.04, Ubuntu 16.04, Ubuntu 14.04

• Linux Mint 18, Linux Mint 17

• CentOS 7

• Oracle Linux 7

• Fedora 25, Fedora 26

• Debian 8.7 or later versions, openSUSE 42.2 or later versions

• SUSE Enterprise Linux (SLES) 12 SP2 or later versions

Hot, Warm, Cold Data Storage

Hyper Historian data historian integrates with and supports Microsoft Azure Data Lake for more data storage, archiving and retrieval.

When real-time “hot” data is collected at the edge by IoT devices and other remote collectors, it can then be securely transmitted to “warm” data historians for mid-term archiving and replay. Hyper Historian now features the ability to archive to “cold” long-term data storage systems such as data lakes, Hadoop or Azure HD Insight. These innovations help to make the best use of historical data at any stage in the process for further analysis and for use with machine learning.

Analytics

Among the new analytical features are a new 64-bit BridgeWorX64 data bridging tool, a new 64-bit ReportWorX64 reporting tool, several new Energy AnalytiX asset performance charts and usability improvements. In addition, Iconics has introduced a new BI Server.

• AnalytiX-BI – Provides data aggregation using data modeling and data sets

• ReportWorX64 – Flexible, interactive, drag & drop, drill-down reporting dashboards

• BridgeWorX64 – Data Bridging and with drag-and-drop workflows that can be scheduled

• Smart Energy AnalytiX – a SaaS based energy and facility solution for buildings

• Smart Alarm AnalytiX – a SaaS based alarming analysis product that uses EEMUA

Industrial Internet Consortium Gaining Momentum With Partners and Testbed

Industrial Internet Consortium Gaining Momentum With Partners and Testbed

The Industrial Internet Consortium (IIC) has been incredibly active over the past month. While I’ve been traveling, news releases and interview opportunities have been pouring in.

In brief:

  • IIC and Avnu Alliance Liaison
  • IIC and the EdgeX Foundry Announce Liaison
  • IIC Develops Smart Factory Machine Learning for Predictive Maintenance Testbed
  • IIC Publishes Edge Computing Edition of Journal of Innovation

Related:

See my white paper on OPC UA and TSN. I wrote this following interviews at Hannover for the OPC Foundation and subsequent travels to see people. I think this is a powerful combination for the future.

Why it’s important:

These news items when viewed collectively show momentum for what is happening with the Industrial Internet—or as some say the Industrial Internet of Things. These technologies are soon to be powerful business drivers for a new age of manufacturing.

The News:

Liaison with Avnu Alliance

The Industrial Internet Consortium (IIC) and Avnu Alliance (Avnu) have agreed to a liaison to work together to advance deployment and interoperability of devices with Time Sensitive Networking (TSN) open standards.

Under the agreement, the IIC and Avnu will work together to align efforts to maximize interoperability, portability, security and privacy for the industrial Internet. Joint activities between the IIC and the Avnu will include:

  • Identifying and sharing IIoT best practices
  • Realizing interoperability by harmonizing architecture and other elements
  • Collaborating on standardization

“Both Avnu and the IIC are well aligned to pursue the advancement of the IIoT. An example of this is Avnu’s participation in the IIC TSN testbed where members have an opportunity to try their equipment and software on the testbed infrastructure. This provides the participants with the ability to discover what’s working and what is not and provide feedback that helps speed market adoption,” said Gary Stuebing, IIC liaison to Avnu. “The lessons learned in our TSN testbed fuel the ability of both of our organizations. TSN could open up critical control applications such as robot control, drive control and vision systems.”

“Our liaison agreement and work with the IIC TSN Testbed demonstrates real-world applications and solutions with TSN and helps to accelerate readiness for the market. The testbed stands as a showcase for the value that TSN standards and ecosystem of manufacturing applications and products bring to the market, including the ability for IIoT to incorporate high-performance and latency-sensitive applications,” said Todd Walter, Avnu Alliance Industrial Segment Chair. “Our collaboration with IIC and the work coming out of the TSN Testbed is already having a direct impact on suppliers and manufacturers who see the technology as a value add for their system structure.”

Avnu and IIC are meeting for a TSN Testbed plugfest later this month to evaluate and trial TSN device conformance tests that are being developed as a baseline certification in the industrial market.

Avnu creates comprehensive certification tests and programs to ensure interoperability of networked devices. The foundational technology enables deterministic synchronized networking based on IEEE Audio Video Bridging (AVB) / Time Sensitive Networking (TSN) base standards. The Alliance, in conjunction with other complementary standards bodies and alliances, provides a united network foundation for use in professional AV, automotive, industrial control and consumer segments.

 

Agreement with EdgeX Foundry

The Industrial Internet Consortium and EdgeX Foundry, an open-source project building a common interoperability framework to facilitate an ecosystem for IoT edge computing, announced they have agreed to a liaison.

Under the agreement, the IIC and the EdgeX Foundry will work together to align efforts to maximize interoperability, portability, security and privacy for the industrial Internet.

Joint activities between the IIC and the EdgeX Foundry will include:

  • Identifying and sharing best practices
  • Collaborating on test beds and experimental projects
  • Working toward interoperability by harmonizing architecture and other elements
  • Collaborating on common elements
  • Periodically hosting joint seminars

“We are excited about working with EdgeX Foundry,” James Clardy, IIC liaison to EdgeX Foundry. “And we look forward to leveraging the experiences of the IIC to help further accelerate the adoption of the industrial Internet.”

“EdgeX Foundry’s primary goal is to simplify and accelerate Industrial IoT by delivering a unified edge computing platform supported by an ecosystem of solutions providers,” said Philip DesAutels, senior director of IoT for The Linux Foundation. “Formalizing this liaison relationship with the IIC is fundamental to unlocking business value at scale. Together, we will provide better best practices that will drive the unification of the industrial IoT.”

Hosted by The Linux Foundation, EdgeX Foundry has an ecosystem of more than 60 vendors and offers all interested developers or companies the opportunity to collaborate on IoT solutions built using existing connectivity standards combined with their own proprietary innovations. For more information, visit

 

Smart Factory Machine Learning for Predictive Maintenance Testbed

The Industrial Internet Consortium announced the Smart Factory Machine Learning for Predictive Maintenance Testbed. The testbed is led by two companies, Plethora IIoT, a company, designing and developing cutting-edge answers for Industry 4.0, and Xilinx, the leading provider of All Programmable technology.

This innovative testbed explores machine-learning techniques and evaluates algorithmic approaches for time-critical predictive maintenance.  This knowledge leads to actionable insight enabling companies to move away from traditional preventative maintenance to predictive maintenance, which minimizes unplanned downtime and optimizes system operation.  This would ultimately help manufacturers increase availability, improve energy efficiency and extend the lifespan of high-volume CNC manufacturing production systems.

“Testbeds are the major focus and activity of the IIC and its members. We provide the opportunity for both small and large companies to collaborate and help solve problems that will drive the adoption of IoT applications in many industries”, said IIC Executive Director Dr. Richard Mark Soley. “The smart factory of the future will require advanced analytics, like those this testbed aims to provide, to identify system degradation before system failure. This type of machine learning and predictive maintenance could extend beyond the manufacturing floor to have a broader impact to other industrial applications.”

“Downtime costs some manufacturers as much as $22k per minute. Therefore, unexpected failures are one of the main players in maintenance costs because of their negative impact due to reactive and unplanned maintenance action. Being able to predict system degradation before failure has a strong positive impact on machine availability: increasing productivity and decreasing downtime, breakdowns and maintenance costs,” said Plethora IIoT Team Leader Javier Diaz.  “We’re excited to lead this testbed with Xilinx and work alongside some of the leading players in IIoT technologies. This is a unique opportunity to test together machine learning technologies with those involved in the testbed at different development levels starting from the lab through production environments, where a real deployment solution is utilized. As a result, from these experiences, we can significantly reduce the time-to-market of Plethora IIoT solutions oriented to maximize smart factory competitiveness.”

”Xilinx is committed to providing the Industrial IoT industry with our latest All Programmable SoC and MPSoC platforms – ideal for sensor fusion, real-time, high-performance processing, and machine learning from the edge to the cloud,” stated Dan Isaacs, Director of Corporate Strategic Marketing and Market Development for IIoT and Machine Learning at Xilinx. “The combination of these highly configurable capabilities drives the intelligence of the smart factory.”

Additional IIC member companies participating in this testbed are: Bosch, Microsoft, National Instruments, RTI, System View, GlobalSign, Aicas, Thingswise, Titanium Industrial Security, and iVeia. They provide technologies to enable the Smart Factory Machine Learning testbed, including:

  • Factory automation
  • OT and IT security
  • Edge to cloud machine learning and analytics
  • Time-sensitive networking (TSN)
  • Data acquisition
  • Smart sensor technology
  • Design implementation
  • Embedded programmable SoC technology
  • Secure authentication

 

Journal of Innovation

The Industrial Internet Consortium (IIC) has published the fifth edition of the Journal of Innovation with a focus on edge computing. The Journal of Innovation highlights the innovative ideas, approaches, products, and services emerging within the Industrial Internet, such as smart cities, artificial intelligence, the smart factory, and edge computing.

Edge computing promises to bring real-time intelligence to industrial machines at the edge of the network, where data can be processed closer to its source. Edge computing provides businesses with a cost-effective means to transmit and analyze large quantities of data in real-time, enabling them to reduce unplanned downtime, improve worker safety and enhance asset performance.

“The Journal of Innovation brings together innovators and thought leaders across the IoT spectrum. In this issue, our experts share their insights on edge computing as a key enabling technology poised to transform the IIoT,” said Mark Crawford, co-chair of the IIC Thought Leadership Task Group and Standards Strategist, SAP Strategic IP Initiatives. “Edge computing is not a new concept, but as IIoT transforms business processes, the need to use data closer to its source, whether that be from a wind turbine, a deep-water well’s blowout preventer, or an autonomous car, is paramount.”

The Edge Computing edition of the Journal of Innovation includes articles contributed by leaders at IIC member companies including:

  • Where is the Edge of the Edge of Industrial IoT? · Pieter van Schalkwyk XMPro
  • Device Ecosystem at the Edge – Manufacturing Scenario · Sujata Tilak, Ascent Intellimation Pvt. Ltd.
  • Edge Intelligence: The Central Cloud is Dead – Long Live the Edge Cloud · Yun Chao Hu, Huawei Technologies Duesseldorf GmbH
  • Outcomes, Insights, and Best Practices from IIC Testbeds: Microgrid Testbed · Brett Burger, National Instruments · Joseph Fontaine, Industrial Internet Consortium
  • A Knowledge Graph Driven Approach for Edge Analytics · Narendra Anand, Accenture Technology Labs · Colin Puri, Accenture Technology Labs
  • Industrial IoT Edge Architecture for Machine and Deep Learning · Chanchal Chatterjee, Teradata Inc. · Salim AbiEzzi, VMWare Inc.
  • A Practical and Theoretical Guide to Using the Industrial Internet Connectivity Framework · Stan Schneider, PhD. Real-Time Innovations, Inc. · Rajive Joshi, PhD. Real-Time Innovations, Inc.
Industrial Internet Consortium Gaining Momentum With Partners and Testbed

Recognizing Digital Transformation Does Not Equate To Achieving It

Two research studies have crossed my inbox recently regarding management knowledge of and actions toward Digital Transformation and the Industrial Internet of Things. Suffice to say that there is a disconnect.

Get smart: Humans have perceived for millennia the disconnect between knowing and doing. These research surveys show that even when managers acknowledge the importance of modern digital technologies they cannot get the job done.

Big Thought: Implementers have realized significant cost reductions and increased speed of product development.

**

The first study was conducted by enterprise business solutions provider, HSO. It found 54% of managers in the manufacturing industry believe that their company is not effectively using predictive engineering technology, despite the technology being billed as a leading industry trend.

In an era that has been dominated by the rise of IoT and predictive analytics technology, it was also surprising to find that only 15.2% of those polled placed predictive engineering as a business priority for the next five years.  In addition to this, a quarter of the 250 managers involved in the study feel that a lack of integrated technology across different departments is the main reasons that firms do not implement predictive engineering.

However, the study did reveal that more than four in ten managers in manufacturing feel that the rise of IoT technologies is crucial to help drive predictive engineering, with artificial intelligence and machine learning also being rated as important factors.

Out of the manufacturers that are using predictive engineering to help make their processes more efficient, over half (55.6%) stated that they are benefitting from significant cost reductions while 44.8% are seeing an increase in the speed of product development.

A second study by IFS, and enterprise applications provider, found lack of integration stands between companies and digital transformation benefits of IoT. According to a survey of 200 IoT decision makers at industrial companies in North America, only 16 percent of respondents consume IoT data in enterprise resource planning (ERP) software. That means 84 percent of industrial companies face a disconnect between data from connected devices and strategic decision making and operations, limiting the digital transformation potential of IoT.

The study posed questions about companies’ degree of IoT sophistication. Respondents were divided into groups including IoT Leaders and IoT Laggards, depending on how well their enterprise software prepared them to consume IoT data—as well as Digital Transformation Leaders and Digital Transformation Laggards depending on how well their enterprise software prepared them for digital transformation.

The two Leaders groups overlapped, with 88 percent of Digital Transformation Leaders also qualifying as IoT Leaders, suggesting IoT is a technology that underpins the loose concept of digital transformation. Digital Transformation Leaders made more complete use of IoT data than Digital Transformation Laggards; Leaders are almost three times as likely to use IoT data for corporate business intelligence or to monitor performance against service level agreements.

Digital Transformation Leaders were more likely than Digital Transformation Laggards to be able to access IoT data in applications used beyond the plant floor. They were more than four times as likely to have access to IoT data in enterprise asset management software, twice as likely than Digital Transformation Laggards to be able to access IoT data in high-value asset performance management software, and almost twice as likely to be able to be able to use IoT data in ERP.

The data suggests a real need for more IoT-enabled enterprise applications designed to put data from networks of connected devices into the context of the business.

Industrial Internet Consortium Gaining Momentum With Partners and Testbed

Canvass Analytics, OSIsoft to Deliver Predictive Insights

Whether it is the Industrial Internet of Things or Industry 4.0 or Smart Manufacturing no benefits are garnered at the end without a superb analytics engine. Recently I talked with Humera Malik, CEO of Canvass Analytics, about a new analytics company and product that brings Artificial Intelligence (AI) and Machine Learning (ML) to the field.

Early in my management career we called accounting “ancient historians” because reports only came out 10 days following a month end. That is too late to be what we call these days “actionable information.”

Turns out that a similar problem has existed in the predictive analytics field. OSIsoft and others have provided tools to capture huge amounts of industrial and manufacturing data. To get anything out of it you needed to establish a project, bring in a bunch of data scientists, and try to glean some trends or fit some models.

What was needed was a powerful engine that can use this data closer to real time, fit it into a model (selecting one from among several), and give operators, maintenance technicians, engineers, and others information in a useable time frame without bringing in a bunch of data scientists. These data scientists it turns out need to reside in the software. The entire process must be transparent to the user.

Enter Canvass Analytics, a provider of AI-enabled predictive analytics for Industrial IoT, which just announced a partnership with OSIsoft, a global leader in operational intelligence, that will enable Industrial companies to accelerate the return on investment of their IoT initiatives.

Malik commented, “Predictive and automated analytics gives operations teams the insights to answer questions such as, how can I increase yield, how can I reduce downtime and how can I reduce my maintenance costs? Canvass’ AI-enabled analytics platform accelerates the delivery of predictive insights by automating data analysis and leveraging machine learning technologies to adapt to data changes in real-time. For operations teams, this means they have the latest intelligence in order to make critical operational decisions.”

The combination of OSIsoft’s methodology to collect, store and stream data from any Industrial IoT source with Canvass’ AI-enabled automated analytics platform brings a new approach to creating predictive models that continually retrain themselves. With the resulting insight, Industrial companies have the potential to reduce plant maintenance by up to 50 percent and optimize plant operations by 30 percent.

“We are enthusiastic about the value that we see companies like Canvass Analytics extracting from the vast amounts of IIoT and other streaming data that we collect in our role as the single source of the truth,” said J. Patrick Kennedy, founder and CEO of OSIsoft.

Follow this blog

Get a weekly email of all new posts.